

Toronto, Canada July 9-14, 2023

## **Say What You Mean!** Large Language Models Speak Too Positively about Negative Commonsense Knowledge

**Jiangjie Chen**, Wei Shi, Ziquan Fu, Sijie Cheng, Lei Li, Yanghua Xiao







Brain Technologies Inc.



### Commonsense knowledge and LLMs: Both positive and negative



What does not exist.

. . .

\*: (Molnar, 2000; Barker and Jago, 2012)

# Do LLMs acquire implicit negative commonsense knowledge?

#### Mask-infilling task, e.g., LAMA



- Not natural for unidirectional LLMs
- Suffers from the open-world problem in evaluation

### Can LLMs generate sentences grounded in such knowledge?

Knowledge-grounded text generation, e.g., CommonGen

**Concept-Set:** a collection of objects/actions.

dog | frisbee | catch | throw



Generative Commonsense Reasoning

Expected Output: everyday scenarios covering all given concepts.

Do not investigate generating negative knowledge.

CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning. Lin et al. 2020 How to probe a generative LLM with negative knowledge?

### Two Tasks for Probing Negative Knowledge in LLMs



# **Composition of Probing Data**



#### <s, r, o> Triplets

lion, isA, mammal>

**CSK-PN** dataset

Positive : Negative = 2000 : 2000

# Do LLMs have negative knowledge?

### The Gap between Positive and Negative Knowledge on CG and QA



Accuracy (%) of QA & CG tasks on the **positive** split (10-shot)



Accuracy (%) of QA & CG tasks on the **negative** split (10-shot)

## **Consistency between CG and QA**





# The "Belief Conflict"

- LLMs frequently fail the CG task by generating invalid sentences grounded in negative commonsense knowledge.
- But LLMs can correctly answer the QA questions, demonstrating they know the negative knowledge.
- It's dangerous when LLMs say what they do not mean.

# What are the Causes of Belief Conflict?

# Could keywords as task input hinder the manifestation of LLMs' belief?



- 1. keyword-to-sentence (CG) is an appropriate and challenging task to probe generative LLMs.
- 2. Keyword inputs for negative knowledge do not have a statistical <sup>13</sup> shortcut from pre-training.

# Will the keyword co-occurrence within corpus affect LLMs' generation?



1. The hard-to-generate negative knowledge for LLMs tend to be those where they have seen many subjects and objects appear together.

# How does the balance of positive and negative examples affect negation bias?



- 1. With more E-s, LLMs are encouraged to generate more negations.
- 2. The belief conflict can be overcome by increasing negated texts in the training data or in-context examples. (Not always feasible.)

How to Alleviate the Belief Conflict?

### Chain-of-Thought Helps 😂: **Deductive Reasoning**

| Keywords<br>bird, capable of, fly                     | If P then Q. Not Q.<br>Therefore, Not P. If P then Q. P.<br>Therefore, Q. |                   |                     |                     |              |                     |                     |                     |  |
|-------------------------------------------------------|---------------------------------------------------------------------------|-------------------|---------------------|---------------------|--------------|---------------------|---------------------|---------------------|--|
| Let's think step by step                              | Model                                                                     | СоТ               | k = 2 (1:1)         |                     |              | k = 10 (1:1)        |                     |                     |  |
| Thinas with lightweight bodies                        |                                                                           |                   | TP                  | TN                  | Acc          | TP                  | ΤN                  | Acc                 |  |
| and strong wing muscles (P)<br>can usually fly (Q).   | Codex <sub>002</sub>                                                      | None<br>Deduction | <b>96.6</b><br>86.9 | 38.0<br><b>56.6</b> | 67.3<br>71.7 | <b>93.2</b> 83.5    | 68.8<br>73.0        | 81.0<br>78.3        |  |
| characteristics (P).<br>Therefore, birds can fly. (Q) | Instruct-<br>GPT <sub>002</sub>                                           | None<br>Deduction | <b>92.9</b><br>87.0 | 51.4<br><b>57.3</b> | 72.1<br>72.1 | <b>88.9</b><br>84.3 | 61.4<br><b>70.7</b> | 75.1<br><b>77.5</b> |  |

#### Sentence

birds can fly.

### Chain-of-Thought Helps 😂: Fact Comparison



| Model                           | СоТ  | k :  | k = 10 (1:1) |      |      |      |      |
|---------------------------------|------|------|--------------|------|------|------|------|
|                                 |      | TP   | TN           | Acc  | TP   | TN   | Acc  |
| Codex <sub>002</sub>            | None | 96.6 | 38.0         | 67.3 | 93.2 | 68.8 | 81.0 |
|                                 | Fact | 92.9 | 53.7         | 73.3 | 86.8 | 76.6 | 81.7 |
| Instruct-<br>GPT <sub>002</sub> | None | 92.9 | 51.4         | 72.1 | 88.9 | 61.4 | 75.1 |
|                                 | Fact | 89.1 | 55.5         | 72.2 | 85.5 | 69.2 | 77.4 |

- 1. Even though LLMs picked up implicit bias during pre-training, it can be overcome by making the reasoning chain explicit.
- 2. LLM holding concerns of exceptions? Yes, but the conclusion still stands.

# RLHF (Somehow) also Helps 🤪

| Model       | k  | Perf. on QA |             |      | Perf. on CG |             |             | Cns. | consis |
|-------------|----|-------------|-------------|------|-------------|-------------|-------------|------|--------|
|             |    | TP          | TN          | Acc  | TP          | TN          | Acc         |      | tency  |
| Instruct-   | 2  | 81.7        | 86.1        | 83.9 | 92.9        | 48.7        | 72.1        | 71.2 |        |
| $GPT_{002}$ | 10 | 84.1        | <u>84.7</u> | 84.4 | 88.9        | 61.4        | 75.1        | 77.5 |        |
| Instruct-   | 2  | 87.9        | 81.3        | 84.6 | 95.1        | 58.1        | 76.6        | 80.5 |        |
| $GPT_{003}$ | 10 | <u>89.0</u> | 79.5        | 84.2 | 91.1        | 73.6        | <u>82.3</u> | 87.9 |        |
| ChatGPT     | 2  | 82.9        | 82.0        | 82.4 | 89.8        | 69.8        | 79.8        | 79.2 |        |
|             | 10 | 81.5        | 85.7        | 83.6 | 90.4        | <u>78.4</u> | 84.4        | 84.1 |        |
|             |    |             |             |      |             |             |             |      |        |

- 1. Models with RLHF (InstructGPT-003, ChatGPT) are better and more consistent at QA and CG.
- 2. Negative knowledge and rebuttal statements are frequently used in human feedback to steer the model?
- 3. Does RLHF lead to cheating?



Toronto, Canada July 9-14, 2023

## Say What You Mean! Large Language Models Speak Too Positively about Negative Commonsense Knowledge



Jiangjie Chen, Wei Shi, Ziquan Fu, Sijie Cheng, Lei Li, Yanghua Xiao

A OTHER DOLLAR DOLLARS. BALLET IN SHIT



Feel free to contact: jjchen19@fudan.edu.cn

More details in the paper!