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ABSTRACT

Automatic Answer span Extraction (AE) focuses on identifying key
information from paragraphs that can be asked. It has been used to
facilitate downstream question generation tasks or data augmenta-
tion for question answering. Current work of AE heavily relies on
the annotated answer spans fromMachine Reading Comprehension
(MRC) datasets. However, these methods suffer from the partial
annotation problem due to the annotation protocols of MRC tasks.
To tackle this problem, we propose SCOPE, a Structured Context
graph network with Positive-unlabeled learning. SCOPE first repre-
sents the paragraph by constructing a graphwith both syntactic and
semantic edges, then adopts a unified pointer network for answer
span identification. SCOPE narrows the discrenpency between AE
and MRC by formulating AE as a Positive-unlabeled (PU) learning
problem, thus recovering more answer spans from paragraphs. To
evaluate newly extracted spans without annotation, we also present
an automatic metric from the perspective of question answering
and text summarization, which correlates well with human judg-
ments. Comprehensive experiments on both AE and downstream
tasks demonstrate the effectiveness of our proposed framework.
Our code is available at https://github.com/iambabao/SCOPE.
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Paragraph #1: 
… In 1815, the British government selected Saint Helena as the place of detention of 
Napoleon Bonaparte. He was taken to the island …

Golden answer spans:

Answer span #1: 1815 
Corresponding question: What year was Napoleon Bonaparte taken to the island?

Unlabeled answer spans:

Paragraph #2: 
… In 1882, Albert Zahm built an (… SKIP…). Around 1899, Professor Jerome Green became 
the first American to (… SKIP…). In 1931, Father Julius Nieuwland performed early work … 

Question answer pairs are omitted to save space

Answer span #2: Napoleon Bonaparte 
Corresponding question: The British government detained who in Saint Helena?

Answer span #3: British 
Corresponding question: Which government sent Napoleon Bonaparte to Saint 
Helena?

Answer span #4: Saint Helena 
Corresponding question: Where was Napoleon Bonaparte imprisoned?

Figure 1: Examples of annotations from SQuAD that illus-

trate the partial annotation problem. Both paragraphs con-

tain labeled answer spans and unlabeled answer spans.

1 INTRODUCTION

Generating question-answer pairs again unstructured paragraphs
has gained significant attention. It is an essential step in data aug-
mentation for Machine Reading Comprehension (MRC) and Ques-
tion Answering (QA) tasks [2, 38]. Typically, such a system consists
of a pipeline of Answer span Extraction (AE) and Question Gener-
ation (QG). It first identifies answer spans that can be asked and
then generates questions with different focuses. As the first step,
AE determines the quality of key information used to generate
questions and is still a challenging but less-explored sub-task.

Previous work on AE focuses on designing specialized methods
to extract answer spans by modeling this task as a span classifica-
tion task [6, 20]. The supervision they rely on mainly comes from
the existing MRC datasets such as SQuAD [29] where answer spans
are explicitly given. However, the supervision in MRC tasks is usu-
ally incomplete for AE due to the different annotation protocols.
The annotators in such datasets are only required to extract limited
answer spans (usually 5) for each paragraph. This annotation pro-
cedure ignores other detailed key information that would also be
helpful for readers to understand the context. We point out missing
annotations will lead to the partial annotation problem [37, 40] that
provides wrong supervision for previous AE methods and makes
them fail to extract more answer spans from paragraphs.
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To illustrate the partial annotation problem, we present two
examples from SQuAD in Figure 1. In the first paragraph, “1815”
gives the temporal message for a “When” question while “Napoleon
Bonaparte” tells us “Who” was involved in. However, the given
paragraph also mentions the location, i.e. “Saint Helena”, which
is worthy of asking for a “Where” question but is not labeled.
Moreover, these unlabeled answer spans share high similarities
with labeled samples, e.g., “1822” and “Around 1899” are annotated
while “1931” is missed in the second paragraph. To the best of
our knowledge, no previous work explicitly considers this partial
annotation problem in AE tasks.

In this paper, we aim to tackle the partial annotation problem to
extract more answer spans from existing MRC datasets for better
question generation and question answering. Given that the fine-
grained annotation of answer spans requires significant expert
labor, it leads to the first challenge in the training stage: a) How
can we exploit the existing MRC datasets to extract more high-
quality answer spans with partially annotated data? After obtaining
a robust model that can extract more spans from paragraphs, the
results will include newly extracted spans without annotation and
further lead to the second challenge in the evaluation stage: b) How
can we automatically evaluate newly extracted spans without the
help of ground truth?

To solve the challenges above, we revisit AE in both training
and evaluation stages. As a key perspective, we formulate AE as a
Positive-unlabeled (PU) learning problem [9] to solve the first chal-
lenge. This roots in our observation in Section 3 that MRC datasets
consist of annotated answer spans which are positive samples and
others which are unlabeled ones. We try to re-estimate the risk of
unlabeled data with a class prior under PU learning framework.
To provide more informative contextual representations for PU
classifier, we augment the understanding of textual paragraph by
modeling its inherent structure. Specially, we construct a graph
with both syntactic edges and semantic edges for information propa-
gation. Finally, a variant pointer network, namely unified pointer,
is proposed to classify each candidate span.

For the second challenge, we propose an automatic metric, i.e.
question-worthy score, to evaluate whether a span is worthy of
asking. We empirically disentangle this problem into the measure-
ment of questionability and worthiness. The first property aims to
evaluate whether a span can be asked by humans and is calculated
by the question answering system assisted with a question genera-
tion model. Meanwhile, a meaningful question tends to probe key
information located in salient sentences from paragraph. We, there-
fore, design the second property by utilizing text summarization
techniques that measure the salience of sentences.

To summarize, the contributions of this paper include:

• We investigate the partial annotation problem in AE task and
propose SCOPE, a graph-based method under PU learning
framework to solve it.

• Wedecompose the question-worthiness of answers into ques-
tionability and worthiness, and propose an automatic evalu-
ation metric to assess them.

• The extracted answer spans, when used as augmented data,
successfully boost downstreamMRC task, which also demon-
strates the effectiveness of SCOPE.

2 RELATEDWORK

Answer Span Extraction. The basic idea behind AE is highly
related to information extraction tasks (i.e., Semantic Role Labeling
(SRL) [17], Open Information Extraction (OpenIE) [39], etc.). Differ-
ent from SRL and OpenIE that focus on identifying arguments for a
central verb, AE utilizes a verb-free extraction paradigm, extracting
entities, numbers, or other key information from paragraphs that
can be asked. Previous work on AE mainly takes the sequence label-
ing [5, 6] or span selection [32] setting to identify answer spans. By
regarding each semantic chunk in paragraphs as candidate spans,
others also try to find answer spans through syntactic rules [4, 26]
or sampling from a joint distribution [20]. However, when most
research endeavors focus on designing sophisticated architecture,
we point out the supervision they rely on is far from sufficient and
will hinder the generalization of models. In this paper, we take a
further step to analyze the partial annotation problem in AE task.

Positive-unlabeled Learning. PU learning tries to learn an
unbiased binary classifier from only positive and unlabeled data.
This setting is very common in the real scenario where labeling
all positive data requires significant expert labor [25] or negative
samples are hard to obtain [35]. Existing PU learning methods can
be roughly divided into two categories: a) One tries to select high-
quality negative samples from unlabeled data as possible negative
data [19]. b) The other proposes to use modified risk estimators
and re-weight the empirical risk for unbiased learning [8, 9, 16].
In this paper, we mainly focus on the second branch to learn an
unbiased binary classifier. Different from conventional supervised
or semi-supervised learning where labeled samples are provided
for each class, PU learning only has labeled samples as positive
data and others as unlabeled data.

3 EXPLORE THE PARTIAL ANNOTATION

PROBLEM

Since there is no specific dataset for AE, a common way to train the
AEmodel is to use the annotation fromMRC datasets. In this section,
we first formalize the AE task under MRC setting in Section 3.1.
Then we conduct a dataset-dependent analysis in Section 3.2 on
two well-known MRC datasets, i.e., SQuAD [29] and DROP [10], to
show the limitation of MRC datasets.

3.1 Problem Definition

Given a paragraph P = {𝑡1, 𝑡2, · · · , 𝑡𝑁 } with 𝑁 tokens, the goal
of AE is to identify a set of answer spans S = {𝑠𝑖 } against the
candidate span set S∗. Generally, |S∗ | contains all possible text
fragments 𝑡𝑖:𝑗 from the original paragraph where 𝑖 ≤ 𝑗 .

Under MRC setting, we have paragraphP paired with a set of QA
pairs {𝑞𝑖 , 𝑎𝑖 }, where 𝑞𝑖 is the question and 𝑎𝑖 is the corresponding
answer. Previous work uses answers in {𝑞𝑖 , 𝑎𝑖 } to construct positive
data S𝑝 for AE where each 𝑠𝑖 ∈ S𝑝 corresponds to an answer 𝑎𝑖 .
The main backward of this setting is that many answer spans are
not annotated. Directly taking the unlabeled data S𝑢 = S∗\S𝑝 as
negative samples and conducting the conventional training will
lead to the wrong classification boundary [9]. Therefore, our goal is
to find the optimal classifier 𝑓𝜃 ∗ (·) with parameter 𝜃∗ for partially
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Table 1: Results of re-annotation on both datasets. 𝛾 indicates

the proportion of answers that are not annotated by the orig-

inal dataset.

Dataset #Sentences

��S𝑝

�� |M| 𝛾

SQuAD 237 219 207 48.59%
DROP 445 296 492 62.44%

annotated data S∗ as follows:

𝜃∗ = argmax
𝜃

∑︁
𝑠∈S∗

log 𝑃 (𝑦∗ |𝑠;𝜃 ), (1)

where 𝑦∗ denotes the ground truth label to 𝑠 .

3.2 Dataset-dependent Analysis

To better explore the partial annotation problem, we narrow down
the definition of answer span to factoid information in paragraphs
(e.g., entities, dates, values, etc.) that makes up more than 90% of
answer spans from SQuAD and DROP 1. We take the following
re-annotation procedure: We first randomly pick 50 paragraphs
from each dataset. Two annotators are asked to annotate answer
spans for 25 paragraphs respectively. Our annotation guidelines
encourage annotators to ask similar types of information missed
by the original dataset, like the unlabeled entity and dates in the
second example shown in Figure 1. For spans mentioned multiple
times in one paragraph, we annotate the first appearance if it can
be asked, since it brings more information to the reader. Then two
annotators re-check each other’s results for agreement 2. If they
have conflicts, we will send these samples to the third annotator
for final judgments.

Given a set of spans S, we define the missing rate 𝛾 as follows:

𝛾 =
|M|��S𝑝 ∪M

�� , (2)

where S𝑝 is the set of positive spans and M is the set of answer
spans not given in S. We do not consider negative spans S𝑛 in
calculation mainly because 𝛾 plays a role similar to the Recall. Note
that whenS is the original golden span set from datasets, it contains
only S𝑝 and |M| is equal to the number of newly annotated spans.

As shown in Table 1, we annotated 237 (445) sentences for
SQuAD (DROP) and the missing rate reaches 48.59% (62.44%). This
indicates that there are a comparable number of positive answer
spans not annotated among unlabeled candidate spans, suggesting
that the entire dataset contains positive and unlabeled data. In this
scenario, conventional supervised training methods are not satiable
since they heavily rely on well-annotated data. With this in mind,
we formulate the AE task as a PU learning problem and propose
SCOPE to solve the partial annotation problem in AE. Meanwhile,
it is hard to judge whether a single answer span is worthy of ask-
ing since it may be unlabeled. To better distinguish noisy spans
from answer spans without annotation, we further introduce an
automatic metric for evaluating the question-worthiness nature of
given spans.
1DROP contains three types of answers and we only consider the extractive examples
where the answer is a span from the original paragraph.
2Our agreement of first two annotators is 89.37% for SQuAD and 76.83% for DROP.
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Verb Node

Numerical Node
+
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Stage 3: Unified Pointer Network
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 Span Classification

Start Indexes

End Indexes

x = Concat(hstart
i , hend

j )
Boston is the capital and largest city of the Commonwealth of Massachusetts in the United States…

Semantic Graph

Figure 2: An overview of SCOPE. Taking a paragraph as in-

put, its representation is first obtained by the PLM. Then

we use GAT to propagate information over context graph

(self-loop edges are omitted for brevity). Finally, a unified

pointer network is employed to identify answer spans. The

entire model is trained in an end-to-end fashion under PU

learning framework.

4 METHOD

In this section, we first present the overview of SCOPE and detail
its components in Section 4.1- 4.3. Then the automatic metric is
introduced in Section 4.5.

The overview of SCOPE is outlined in Figure 2. For a given
paragraph, token representation learning module first obtains its
contextual embedding by Pre-trained Language Models (PLMs), e.g.,
BERT [3] or RoBERTa [22]. Then a structured context graph is con-
structed with both syntactic and semantic edges. We apply Graph
Attention Network (GAT) [33] to iteratively propagate information
between different key components. The learned representations
are then fed into a variant pointer network, namely unified pointer,
to identify target spans by matching start and end indexes. Finally,
we optimize the proposed model under the PU learning framework
to alleviate the bias introduced by annotation.

4.1 Token Representation Learning

Token representation learning module aims to obtain the initial rep-
resentations of input tokens. To be in line with backbone PLM, the
given paragraphP is first tokenized into sub-tokens {𝑒1, 𝑒2, · · · , 𝑒𝑁 ′}.
The PLM receives the sub-token sequence and outputs the contex-
tual representation matrix E′ = {e1, e2, · · · , e𝑁 ′} ∈ R𝑁 ′×𝑑1 , where
𝑑1 is the hidden size. We then reconstruct representation for each to-
ken 𝑡𝑖 by averaging sub-token representations as t𝑖 = Average𝑗 (e𝑗 )
where 𝑒 𝑗 ∈ 𝑡𝑖 , and the final token representations can be denoted
as E = {t1, t2, · · · , t𝑁 } ∈ R𝑁×𝑑1 .

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

29



4.2 Structured Context Graph Network

When PLMs mainly capture the contextual information from para-
graph, we further enhance the structural information by introduc-
ing the structured context graph network.

GraphConstruction. We construct the structured context graph
following two categories of syntactic and semantic edges. We first
build syntactic edges with the dependency parsing tree due to the
promising results achieved in many information extraction tasks
[14, 30]. We encourage the model to reveal the intrinsic structure
in each sentence with syntactic edges because a valid span prefers
to form a sub-tree. It can also effectively capture the dependency
relation between entities and central verbs while filtering out irrel-
evant information. However, syntactic edges lack the information
exchange between sentences and are insensitive to what is worth
asking. To tackle this problem, we further enrich the graph with
semantic edges using heuristic rules that stem from the associations
between different key elements. It is motivated by the observation
that humans tend to ask different types of questions like “What hap-
pened to whom, when, and where”. Specifically, we extract the verbs
(what), locations (where), times (when), and other noun phrases
(whom) based on named entity recognition and part-of-speech re-
sults. Then, tokens that have the same type are fully connected to
form a sub-graph. After constructing both syntactic and semantic
edges, we merge them for the final graph learning. We also intro-
duce a self-loop edge to every node because it includes the node
information itself in the message propagation process.

Graph Learning. Let H𝑙 = {h𝑙1, h
𝑙
2, · · · , h

𝑙
𝑁
} denote the node

representation in 𝑙𝑡ℎ layer. We first initialize H0 with token repre-
sentation E, then apply GAT on structured context graph. Specifi-
cally, for each linked node pair 𝑖 and 𝑗 , we compute the attention
weight as follows:

𝛼𝑙𝑖, 𝑗 = softmax𝑗 (e𝑙𝑖, 𝑗 ) =
exp (e𝑙

𝑖, 𝑗
)∑

𝑘∈N𝑖
exp (e𝑙

𝑖,𝑘
)
,

e𝑙𝑖, 𝑗 = 𝑓 𝑙 (W𝑙h𝑙𝑖 ,W
𝑙h𝑙𝑗 ),

(3)

where e𝑙
𝑖, 𝑗

denotes the attention coefficient between two linked
nodes which is further normalized into 𝛼𝑙

𝑖, 𝑗
, N𝑖 are the neighbor-

hoods of node 𝑖 ,W𝑙 ∈ R𝑑2×𝑑1 is learned parameter, 𝑓 𝑙 : R𝑑2×R𝑑2 →
R is a linear transformation.

After obtaining the attention weights, we update the node rep-
resentations for next layer as follows:

h𝑙+1𝑖 =
∑︁
𝑗 ∈N𝑖

𝛼𝑖, 𝑗h𝑙𝑗 . (4)

We stack 𝐿 layers of GAT to capture structural relations from
multi-hop neighbors. The final hidden statesH𝐿 = {h𝐿1 , h

𝐿
2 , · · · , h

𝐿
𝑁
}

are then feed into a unified pointer network to extract answer spans.
For a clearer description, we simplify H𝐿 as H in later sections.

4.3 Unified Pointer Network

There are two main components determining a span in a paragraph,
i.e., the start and end indexes. A straightway for span identification
is to apply a pointer network with two classifiers separately [31].

This strategy suffers from the weakness of softmax function that
only one span can be predicted with the highest probability.

In this section, we adopt a simple yet effective variant pointer
network, namely unified pointer, to select spans from paragraph.
Different from identifying the start and end tokens in pointer net-
work, unified pointer network represents each candidate span uni-
formly with its start and end token representations. It provides a
more fine-grained span representation and can extract multiple
spans without a manually assigned threshold.

To get the start and end representations, we first apply a trans-
formation on H:

H𝑠𝑡𝑎𝑟𝑡 = W𝑠𝑡𝑎𝑟𝑡H, H𝑒𝑛𝑑 = W𝑒𝑛𝑑H, (5)

where W𝑠𝑡𝑎𝑟𝑡 ,W𝑒𝑛𝑑 ∈ R𝑑3×𝑑1 are learned parameters.
For any span 𝑠 starting from 𝑖𝑡ℎ token and ending at 𝑗𝑡ℎ token,

a binary classifier is applied to predict the final results:

𝑦 = softmax(W𝑠𝑝𝑎𝑛x), x = [H𝑠𝑡𝑎𝑟𝑡
𝑖 ;H𝑒𝑛𝑑

𝑗 ], (6)

where W𝑠𝑝𝑎𝑛 ∈ R2×(2∗𝑑3) is learned parameter shared by different
spans, and [·; ·] is the concatenation operation of two vectors.

4.4 Positive-unlabeled Learning Method

One challenge for training the AE model with MRC datasets is that
there are lots of answer spans without annotation in S∗. Directly
regarding all unlabeled candidate spans S𝑢 as negative data S𝑛 will
lead to a biased estimation of training loss. In this section, we try
to solve the partial annotation problem with non-negative Positive-
unlabeled learning (nnPU) [16]. We first review the overall idea of
nnPU, and then apply it to estimate the unbiased training loss.

Non-negative Risk Estimator. Let x ∈ X be the representa-
tion of span from paragraph obtained by Eq. 6 and 𝑦 ∈ Y be the
corresponding label, where X ⊂ R2∗𝑑3 and Y ⊂ {0, 1}. We denote
the entire classification framework as 𝑓 : R2∗𝑑3 → R2 and loss
function as ℓ : R × Y → R. Then the risk of any classifier 𝑓 can be
represented as 𝑅ℓ = Ex,𝑦ℓ (𝑓 (x), 𝑦).

By splitting the risk into two parts, one for positive samples
and the other for negative samples, we get the reformulated 𝑅ℓ as
follows:

𝑅ℓ = 𝜋Ex,𝑦=1ℓ (𝑓 (x), 1) + (1 − 𝜋)Ex,𝑦=0ℓ (𝑓 (x), 0), (7)

where 𝜋 = 𝑃 (𝑦 = 1) is the prior distribution of positive samples in
the dataset, Ex,𝑦=1 and Ex,𝑦=0 are the expectation of positive and
negative samples.

Recall that we only have a labeled set of positive samples S𝑝 and
an unlabeled set S𝑢 . In this scenario, the main problem becomes
how to estimate Ex,𝑦=0ℓ (𝑓 (x), 0) without true negative samples.
Since it always holds that 𝑃 (𝑦 = 0)𝑃 (x|𝑦 = 0) = 𝑃 (x) − 𝑃 (𝑦 =

1)𝑃 (x|𝑦 = 1), the expectation of negative samples can be reformu-
lated as follows:

(1 − 𝜋)Ex,𝑦=0ℓ (𝑓 (x), 0) = E𝑥 ℓ (𝑓 (x), 0) − 𝜋E𝑥,𝑦=1ℓ (𝑓 (x, 0)), (8)

where E𝑥 denotes the expectation of unlabeled samples.
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Based on Eq. 7 and Eq. 8, Kiryo et al. [16] alleviate the overfitting
problem with a lower-bound as follows:

�̃�ℓ = 𝜋𝑅+𝑝 +max(0, 𝑅−𝑢 − 𝜋𝑅−𝑝 ),
𝑅+𝑝 = E𝑥,𝑦=1ℓ (𝑓 (x), 1),
𝑅−𝑢 = E𝑥 ℓ (𝑓 (x), 0),
𝑅−𝑝 = E𝑥,𝑦=1ℓ (𝑓 (x), 0) .

(9)

This provides an alternating way to estimate risk �̃�ℓ with only
positive and unlabeled data.

PU Objective Function. For each candidate span, we have the
final prediction 𝑦 over two classes with Eq. 6. We use the binary
cross-entropy as our loss function ℓ = CrossEntropy (𝑦,𝑦) where
𝑦 is the label from partially annotated dataset. The final empirical
loss is calculated with positive and unlabeled samples as follows:

�̃�ℓ = 𝜋𝑅+𝑝 +max(0, 𝑅−𝑢 − 𝜋𝑅−𝑝 ),

𝑅+𝑝 =
1��X𝑝

�� ∑︁
x∈X𝑝

ℓ (𝑓 (x, 1)),

𝑅−𝑢 =
1

|X𝑢 |
∑︁
x∈X𝑢

ℓ (𝑓 (x, 0)),

𝑅−𝑝 =
1��X𝑝

�� ∑︁
x∈X𝑝

ℓ (𝑓 (x, 0)),

(10)

where X𝑝 and X𝑢 are representations of positive samples and unla-
beled samples respectively.

The model is trained in an end-to-end fashion by minimizing
�̃�ℓ . To calculate the risk term, we only have to estimate the prior
distribution 𝜋 of all positive samples. This can be easily calculated
as follows: a) We first obtain the distribution of annotated positive
samples in the original dataset as 𝜋 ′. b) Then, we calculate the
missing rate 𝛾 defined in Section 3.2 with a few annotations. c) The
𝜋 can be estimated with 𝜋 ′

1−𝛾 .

4.5 Evaluation Framework

Since conventional metrics only measure the alignment of extracted
spans with annotated spans, spans without annotation can not
be evaluated automatically. This problem is more pronounced on
partially annotated datasets. We, therefore, propose an automatic
metric to measure the question-worthiness nature of spans from
the intuition of humans.

Studies in psychology show that humans tend to ask questions
for factoid information [23] and will “select answers that are in-
formative about inferred interests” [12]. These two points of view
motivate us to measure an answer span from two perspectives: 1)
questionability 2) worthiness.

Principle 1. If a span is askable, there exists at least one question
that can be answered by this span with a high probability.

Questionability reflects whether humans can ask questions for
the given factoid information. Intuitively, this is the basic charac-
teristic of an answer span that decides its usage in downstream
tasks. To measure the questionability, we reduce it to a Question
Generation and Question Answering (QGQA) framework, which
serves as dual tasks in many areas [11, 38].

The QG model first takes the given span 𝑠 and its paragraph as
input, and generates corresponding question for it. Then we pair
the question with paragraph and send it into a QA model. The QA
model scores each token with a start score 𝑣𝑠𝑡𝑎𝑟𝑡 and an end score
𝑣𝑒𝑛𝑑 . These two scores indicate the probability of token being start
or end of the answer. The questionability score of the given span is
then calculated as follows:

𝑠𝑐𝑜𝑟𝑒𝑞 (𝑠) =
1
2
∗ (𝑣𝑠𝑡𝑎𝑟𝑡 (𝑖) + 𝑣𝑒𝑛𝑑 ( 𝑗)) , (11)

where 𝑖 and 𝑗 are the start and end positions of given span in
paragraph. In practice, we generate multiple questions with beam
search to alleviate the noise introduced by each module, and take
the highest score as the final score.

Principle 2. If a span is worthy of asking, it contains more in-
formation for people to ask a question.

We design the worthiness of a span to evaluate how important it
is in the paragraph. However, it is hard to automatically decide the
worthiness without human involvement. As a way of expressing
information, we suppose a meaningful question tends to ask the key
information located in salient sentences. This point of view shares
the same idea of sentence salience in extractive summarization [36].
Therefore, we use the summarization score of the context to mea-
sure the coarse-grained worthiness of answer spans. Specifically,
we run an extractive summarization model to assign all sentences a
salience score 𝑣𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑒 ∈ [0, 1]. For any given span from paragraph,
we define the worthiness score as follows:

𝑠𝑐𝑜𝑟𝑒𝑤 (𝑠) = 𝑣𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑒 (C𝑠 ), (12)

where C𝑠 is the sentence in which given span 𝑠 located.

Question-worthy Score. Based on 𝑠𝑐𝑜𝑟𝑒𝑞 and 𝑠𝑐𝑜𝑟𝑒𝑤 , our question-
worthy score 𝜖 of given span 𝑠 is a simple fusion of these two scores
as follows:

𝜖 (𝑠) = 1
2
∗
(
𝑠𝑐𝑜𝑟𝑒𝑞 (𝑠) + 𝑠𝑐𝑜𝑟𝑒𝑤 (𝑠)

)
. (13)

5 EXPERIMENTS

5.1 Datasets and Compared Methods

Datasets. We conduct experiments on two well-known MRC
datasets, namely SQuAD [29] and DROP [10]. Since both datasets
have a blind test set, we split the public available portion into “train”,
“development” and “test”. For SQuAD, we use the widely adopted
three-way split released by Du et al. [7]. For DROP, we randomly
select a test set from the training set, and the test set remains the
same size as the development set. More details can be found in
Appendix A.

Compared Methods. We mainly compare SCOPE against sev-
eral published state-of-the-art baselines, which can be divided into
three types, i.e., classification-based, tagging-based, and pointer-
based methods. To train the classification-based methods, we first
use Stanza [27] to extract all named entities from paragraph as
candidate spans (denoted as “ENT”), then build a classifier to filter
out noisy spans.

• ENT: which contains only named entities in paragraphs
extracted by the off-the-shelf NLP toolkit.
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Table 2: Overall performance on conventional metrics. “Avg. spans” indicates the average number of spans per paragraph

extracted by different methods.

Model

SQuAD DROP

Precision Recall F1 Avg. spans Precision Recall F1 Avg. spans

ENT 13.63 40.41 20.39 12.82 6.31 52.58 11.27 43.90
ENT Classifier (BERT𝑏𝑎𝑠𝑒 ) 48.55 20.37 28.70 1.81 36.90 19.10 25.17 2.73
⌞ (SpanBERT𝑏𝑎𝑠𝑒 ) 47.90 21.09 29.29 1.90 38.62 20.52 26.80 2.80
⌞ (RoBERTa𝑏𝑎𝑠𝑒 ) 47.57 20.61 28.76 1.87 35.54 20.90 26.32 3.10
Sequence Tagger (BERT𝑏𝑎𝑠𝑒 ) 44.39 25.96 32.76 2.53 30.07 20.60 24.45 3.61
⌞ (SpanBERT𝑏𝑎𝑠𝑒 ) 46.96 25.98 33.45 2.39 35.24 20.52 25.94 3.07
⌞ (RoBERTa𝑏𝑎𝑠𝑒 ) 48.43 25.19 33.14 2.25 34.91 19.33 24.88 2.92
Boundary-aware NER (Zheng et al., 2019) 32.80 18.67 23.79 2.46 34.40 7.23 11.95 1.11
BiFlaG (Luo and Zhao, 2020) 36.50 25.97 30.35 3.08 38.13 20.03 26.27 2.77
MRC NER (BERT𝑏𝑎𝑠𝑒 ) (Li et al., 2020) 37.71 25.84 30.67 2.96 29.53 21.20 24.68 3.78
⌞ (SpanBERT𝑏𝑎𝑠𝑒 ) 37.04 27.94 31.85 3.26 31.79 20.52 24.94 3.40
⌞ (RoBERTa𝑏𝑎𝑠𝑒 ) 39.59 27.39 32.38 2.99 32.38 22.43 26.50 3.65
SCOPE (BERT𝑏𝑎𝑠𝑒 ) 36.96 39.99 38.41 4.68 30.74 32.32 31.51 5.54
⌞ (SpanBERT𝑏𝑎𝑠𝑒 ) 41.15 39.70 40.41 4.17 33.95 35.84 34.87 5.56
⌞ (RoBERTa𝑏𝑎𝑠𝑒 ) 36.10 45.19 40.14 5.41 33.51 37.08 35.21 5.83

• ENT Classifier: which is a classification-based method that
uses a classifier built upon the results of “ENT”.

• Sequence Tagger: which is a tagging-based method that
views span extraction as a sequence labeling task.

• Boundary-aware NER [41]: which is a pointer-based method
that contains both boundary detection module and label
prediction module.

• BiFlaG [24]: which is a pointer-based method that constructs
an entity graph and an adjacent graph for nested spans ex-
traction.

• MRCNER [18]: which is a pointer-basedmethod that extracts
spans by answering corresponding questions.

5.2 Performance on Conventional Metrics

Table 2 reports the overall performance on conventional metrics.
It’s worth mentioning that even though the original datasets are
partially annotated, the performance on conventional metrics still
reflects the quantitative alignment between extracted results and
the original annotation, especially in Recall. Generally, SCOPE
significantly outperforms other baselines by a large margin, achiev-
ing 40.41 F1 with SpanBERT𝑏𝑎𝑠𝑒 on SQuAD and 35.21 F1 with
RoBERTa𝑏𝑎𝑠𝑒 on DROP. This performance gain is mainly due to
the improvement in Recall, which confirms the ability of SCOPE to
extract more high-quality answer spans.

From the detailed comparisons between SCOPE and other meth-
ods, we can find that “Sequence Tagger” provides a strong baseline
on SQuAD but has a serious drop on small dataset DROP. As a
compromise, SCOPE has a consistent performance on both datasets.
As an off-the-shelf method, “ENT” provides a relatively high Recall.
However, it fails to identify noise spans because not all entities
are informative enough for asking a question. Without considering
the partial annotation problem introduced by MRC datasets, “ENT
Classifier” suffers from false negative samples and fail to identify
more answer spans. The low Recall and the small number of spans

Table 3: Overall performance on proposed metric. For all

PLM-based methods, we choose the RoBERTa𝑏𝑎𝑠𝑒 implemen-

tation for a fair comparison.We report both the average score

and corresponding standard deviation (in braces).

Model Avg. 𝑠𝑐𝑜𝑟𝑒𝑞 Avg. 𝑠𝑐𝑜𝑟𝑒𝑤 Avg. 𝜖

Golden 80.07 (0.21) 38.09 (0.13) 59.08 (0.13)
ENT Classifier 78.52 (0.21) 32.93 (0.13) 55.72 (0.12)
Sequence Tagger 74.34 (0.21) 35.66 (0.12) 55.00 (0.12)
Boundary-aware NER 70.02 (0.25) 35.30 (0.13) 52.66 (0.14)
BiFlaG 75.95 (0.22) 34.83 (0.13) 55.39 (0.13)
MRC NER 75.07 (0.21) 36.09 (0.12) 55.58 (0.12)
SCOPE 76.94 (0.21) 35.60 (0.12) 56.27 (0.12)

extracted by baseline models will further limit their application in
downstream tasks.

5.3 Performance on Question-worthy Score

In order to measure the generalization ability of models in extract-
ing more answer spans, we study the quality of newly extracted
spans with proposed question-worthy score. The results are summa-
rized in Table 3. As expected, the question-worthy score on golden
spans outperforms all model outputs, indicating that annotated
answer spans are still high-quality in the perspective of question-
ability and worthiness. This is mainly because humans can fully
consider the context of an answer span when they are reading the
paragraph. Combined with the results in Table 2, we can find that
SCOPE achieves the best 𝜖 when extracting more answer spans
compared to other baselines. This is in line with our original inten-
tion of introducing PU learning to extract more answer spans from
paragraph without degrading the quality of the results. Note that
“ENT Classifier” achieves the highest 𝑠𝑐𝑜𝑟𝑒𝑞 among all methods. We
suppose this is mainly due to the advantage of off-the-shelf NLP
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Table 4: Overall performance on data argumentation. For all

PLM-based methods, we choose the RoBERTa𝑏𝑎𝑠𝑒 implemen-

tation for a fair comparison

Backbone Model Exact Match F1

BERT𝑙𝑎𝑟𝑔𝑒 (Devlin et al., 2019) 78.7 81.9
BERT𝑙𝑎𝑟𝑔𝑒 (Our implementation) 77.9 81.3
⌞ ENT Classifier 77.8 (−0.1) 81.1 (−0.2)
⌞ Sequence Tagger 79.0 (+1.1) 82.2 (+0.9)
⌞ Boundary-aware NER 77.3 (−0.6) 80.8 (−0.5)
⌞ BiFlaG 79.1 (+1.2) 82.1 (+0.8)
⌞ MRC NER 79.3 (+1.4) 82.6 (+1.3)
⌞ SCOPE 79.9 (+2.0) 83.2 (+1.9)

Table 5: Ablation study of different modules of SCOPE.

Model Precision Recall F1

SCOPE (RoBERTa𝑏𝑎𝑠𝑒 ) 36.10 45.19 40.14

w/o syntactic edges 39.94 39.37 39.65
w/o semantic edges 41.16 37.89 39.46
w/o PU learning 48.55 28.72 36.09

tools that can extract candidate spans with clear boundaries. How-
ever, many entities are misclassified and it leads to a low 𝑠𝑐𝑜𝑟𝑒𝑤
for “ENT Classifier”. We also find that “Boundary-aware NER” fails
to correctly identify answer boundaries as expected, resulting in
poor performance on 𝑠𝑐𝑜𝑟𝑒𝑞 .

5.4 Performance on Data Augmentation for

MRC

Another way to evaluate the extracted results is to see whether
they can boost the performance of downstream tasks. Therefore,
we analyze how SCOPE could effectively augment the data for MRC
tasks in this section. We conduct experiments on SQuAD 2.0 [28].
For all methods, we first obtain the augmented QA pairs by running
inference on training data. Then we train a BERT-based MRCmodel
and report the performance on development set.

The overall results are demonstrated in Table 4. SCOPE outper-
forms all baselines, which brings about 2.0 performance gain on
EM and 1.9 performance gain on F1. It demonstrates the question-
answer pairs extracted from paragraphs are of high quality. In
contrast, “ENT Classifier” and “Boundary-aware NER” hurt the
results due to noise spans.

5.5 Analysis

To better understand the strengths and limitations of SCOPE and
question-worthy score, we further analyze the results of both. All
analyses are conducted on SQuAD dataset.

Influence of DifferentModules. To analyze the influence brought
by different modules, we conduct ablation studies on both struc-
tured context graph and PU learning framework. The results are
reported in Table 5. We can find that our final model outperforms
both SCOPE (w/o syntactic edges) and SCOPE (w/o semantic edges).
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Figure 3: Question-worthy score against human rating. The

red line goes through the mean scores of each category.

This indicates the ability of structured context graph to integrate
features from both syntactic and semantic edges. When we remove
the PU learning framework, the biased learning objective misleads
the model in the training stage, resulting in a low Recall.

Influence of Prior Distribution. As a key component of PU
learning framework, the estimation of 𝜋 may influence the final
results. To show the robustness of SCOPE, we conduct experiments
under different settings of 𝜋 . We estimate 𝜋 with different scales
vary from 1.50 to 2.50 and present the results in Table 6. Recall that
𝜋 controls the number of ground distribution of positive samples.
Therefore, when we increase the scale factor, the number of ex-
tracted spans also increases. Based on the annotation in Section 3.2,
our default estimation of scale factor equals 2.00 shows the best per-
formance. Furthermore, SCOPE has a consistent performance gain
with different backbone PLMs and prior 𝜋 , suggesting that we do
not need significant expert labor to do a fine-grained re-annotation
over a large amount of data.

Effect of PU Learning. We further analyze the results of SCOPE
with and without PU learning framework to show how PU learning
influences the extracted results. We manually annotate 50 para-
graphs from model outputs as Section 3.2 did 3. As illustrated in
Table 7, SCOPE yields almost twice the number of spans with PU
learning. The results also share a high correlation with human intu-
ition which leads to a significant decrease in missing rate. Note that
the model can reduce the missing rate by extracting as many spans
as possible without considering the question-worthiness nature of
spans. We therefore report the Accuracy of the extracted answer
spans. The performance boost on Accuracy also indicates that the
decrease in missing rate is achieved by extracting more high-quality
answer spans.

Human Correlation. To find out how the proposed metric cor-
relates with humans, we manually divide 555 extracted spans from
100 paragraphs into three types: 1) Span with no sense or can not
be asked. 2) Answer span that can be asked but is meaningless or
with bad boundaries. 3) Answer span that is worthy of asking.
3Our agreement of first two annotators is 86.67%.
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Table 6: Ablation study of 𝜋 that controls the risk estimator on SQuAD. With the increase of scale factor, model extracts more

answer spans from paragraphs. † denotes the default estimation in our previous experiments.

BERT𝑏𝑎𝑠𝑒 SpanBERT𝑏𝑎𝑠𝑒 RoBERTa𝑏𝑎𝑠𝑒

Precision Recall F1 Avg. spans Precision Recall F1 Avg. spans Precision Recall F1 Avg. spans

𝜋 ′ × 1.50 39.93 35.02 37.31 3.79 44.67 35.33 39.46 3.42 42.18 36.83 39.32 3.78
𝜋 ′ × 1.75 39.21 36.25 37.67 4.00 41.77 38.32 39.97 3.97 40.28 38.62 39.43 4.15
𝜋 ′ × 2.00† 36.96 39.99 38.41 4.68 41.15 39.70 40.41 4.17 36.10 45.19 40.14 5.41
𝜋 ′ × 2.25 29.32 47.65 36.30 7.03 37.99 43.04 40.36 4.90 33.31 47.63 39.20 6.18
𝜋 ′ × 2.50 29.41 49.17 36.81 7.23 34.39 46.64 39.59 5.86 32.18 47.06 38.22 6.32

Table 7: Human evaluation on model outputs.

Model #Spans 𝛾 Accuracy

Golden 212 47.91 N/A
SCOPE (RoBERTa𝑏𝑎𝑠𝑒 ) 345 41.77 88.12

w/o PU 186 63.64 83.33

We report the question-worthy score against human rating in
Figure 3. The Pearson correlation coefficient [1] between human
ratings and the proposed metric is 0.8308 with 𝑝 < 0.01, which
shows high a correlation. From the detailed analysis, we can find it
is easy to distinguish bad answer spans from good answer spans
(type 1 vs type 2 & 3) for both human and proposed metric. But
it is even hard for a human to clearly define what is more worthy
of asking (type 2 vs type 3). Besides, there are some extreme cases
that result in very low scores. This is mainly because the proposed
metric is based on learning methods that are sensitive to span
boundaries. We will further show the bad cases in the case study.

Case Study. We present some examples in Figure 4, which show
the effectiveness and weakness of our framework. From paragraph
#1, we can find our model greatly recalls answer spans from para-
graph beyond annotation. Similar to the golden annotation, the
newly extracted answer spans focus on information about maga-
zines that cover the main content of the entire paragraph. However,
since it is a preliminary study on question-worthy nature of answer
spans, our proposed metric is still sensitive to answer boundaries
as shown in paragraph #2. It gives “more than 2,300” a low 𝑠𝑐𝑜𝑟𝑒𝑞
because QAmodel tries to answer the question with answer “2,300”.

6 CONCLUSION

In this paper, we revisit the problem of answer span extraction
in both modeling and evaluation stages. Based on our analysis,
we reveal the annotation problem in answer span extraction task
may lead to a biased model. We propose SCOPE, a graph-based
method under positive-unlabeled learning framework, to bridge this
gap. SCOPE achieves significant performance gain which can recall
more answer spans from paragraphs. To better explore the nature of
question-worthy answer spans without human labor, we propose an
automatic metric, i.e. question-worthy score, from the perspective
of question answering and text summarization. In future work,
we will explore the possibility of combining the extraction model
with the automatic metric in a unified framework. Besides, current

Paragraph #1: 
… As at most other universities, Notre Dame's students run a number of news media outlets. The 
nine student-run outlets include three newspapers, both a radio and television station, and several 
magazines and journals. Begun as a one-page journal in September 1876, the Scholastic 
magazine is issued twice monthly and claims to be the oldest continuous collegiate publication in 
the United States. The other magazine, The Juggler, is released twice a year and focuses on 
student literature and artwork…

Extracted golden answer spans:

Missing answer spans:

Answer span #7: twice 
Generated question: How often is The Juggler published a year?

Answer span #1: three 
Generated question: How many newspapers are run by Notre Dame students?

Answer span #2: September 1876 
Generated question: When did the Scholastic magazine begin?

Newly extracted answer spans:

Answer span #3: nine 
Generated question: How many student-run outlets does Notre Dame have?

Answer span #4: Scholastic 
Generated question: What magazine is the oldest continuous collegiate publication in the 
United States?

Paragraph #2: 
… China Mobile had more than 2,300 base stations suspended due to power disruption or severe 
telecommunication traffic congestion …

Extracted golden answer spans:

Answer span #1: more than 2,300 
Generated question: How many base stations did China Mobile have suspended?

scor eq = 0.91 scor ew = 0.35

scor eq = 0.81 scor ew = 0.36

scor eq = 0.94 scor ew = 0.36

scor eq = 0.84 scor ew = 0.35

scor eq = 0.80 scor ew = 0.21

scor eq = 0.59 scor ew = 0.50

Answer span #5: twice 
Generated question: How many times a month is the Scholastic magazine published?

scor eq = 0.74 scor ew = 0.35

Answer span #6: The Juggler 
Generated question: What magazine is published twice a year at Notre Dame?

scor eq = 0.95 scor ew = 0.21

Figure 4: Case study of SCOPE and proposed metric. Blue

spans are golden spans that are correctly extracted. Green

spans are results that are newly extracted beyond annotation.

Red spans are results that fail to identify.

solution on question-worthy score is still a preliminary study. We
will try to propose a more fine-grained metric to better evaluate
the nature of high-quality answer spans.
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A STATISTICS OF DATASETS

In this work, we mainly conduct experiments on two MRC datasets,
namely SQuAD [29] and DROP [10], the statistics of datasets are
summarized in Table 8.

• SQuAD: which is built upon a large set of Wikipedia articles
and contains more than 100K question-answer pairs. The
answer to each question is a span in the paragraph. During
annotation, crowdworkers were tasked with asking no more
than 5 questions. It results in the absence of many answer
spans for AE task.

• DROP: which focuses on a more challenging MRC setting
with quantitative reasoning over paragraphs. The answers
in DROP contain both numbers, dates, and text spans. We
therefore only use the extractive examples of DROP in our
experiments.

Table 8: Statistics of datasets. The scale of SQuAD is much

larger than DROP, while DROP has longer paragraphs. Both

datasets have an average number of answer spans per para-

graph about 5, except the development set of SQuAD. This

is mainly because there is an additional answers collection

stage in SQuAD development set.

SQuAD DROP

Train Dev Test Train Dev Test

#Passages 16466 2067 2430 4457 507 507
Avg. passage len 139.07 143.24 120.60 256.57 230.99 250.91
Avg. spans 4.50 8.22 4.33 5.26 5.60 5.30
Avg. span len 3.59 3.75 3.11 2.33 2.26 2.26

B IMPLEMENTATION DETAILS

SCOPE. In our experiments, we inherit the Huggingface’s [34]
implementation aswell asmost of the parameters.We evaluate three
types of backbone PLMs, namely BERT𝑏𝑎𝑠𝑒 , SpanSERT𝑏𝑎𝑠𝑒 , and
RoBERTa𝑏𝑎𝑠𝑒 . For graph module, we use Stanza [27] to construct
the graph described in Section 4.2 and stack 3 layers of GAT whose
hidden size is the same as backbone PLMs. We set batch size to
12, learning rate to 2e-5 for BERT𝑏𝑎𝑠𝑒 and SpanSERT𝑏𝑎𝑠𝑒 and 1e-5
for RoBERTa𝑏𝑎𝑠𝑒 . Adam optimizer [15] with warming-up is used.
As mentioned in Section 4.4, we estimate the prior distribution
𝜋 = 2.00 ∗ 𝜋 ′ for SQuAD and 𝜋 = 2.75 ∗ 𝜋 ′ for DROP based on our
re-annotation.

Question-worthy score. For questionability score, we use the
QG model implemented with T5𝑏𝑎𝑠𝑒 4 and the QA model imple-
mented with RoBERTa𝑙𝑎𝑟𝑔𝑒 5. Specifically, we generate 5 questions
with beam search for each span. For worthiness score, we use
BERTSum [21] to calculate the salience score for each sentence.
The checkpoint we used is released by the original paper trained
on CNN/DailyMail [13] without further fine-tuning.

4https://huggingface.co/valhalla/t5-base-qg-hl
5https://huggingface.co/deepset/roberta-large-squad2
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