

Probabilistic Graph Reasoning for Natural Proof Generation

Changzhi Sun Xinbo Zhang Jiaze Chen Yuanbin Wu

Jiangjie Chen Chun Gan Hao Zhou Lei Li

1

Reasoning Over Formal Representation

- Pros
 - Interpretable
 - Easy combine human knowledge
- Cons
 - Knowledge acquisition bottleneck
 - Brittleness
 - when confront with unusual or atypical cases

[Saha+ 2020, Musen&Lei 1988]

Formal Reasoning

2

Reasoning over Natural Language

- Input: a set of facts and rules and a question expressed in natural language.
- Output:predict the answer and provide proof to prove or disprove the question.

• **Proof**:

- Node: fact, rule or NAF
- Edge: logical deduction
- Potential advantages
 - Write theories in natural language
 - Have the machine apply general knowledge

Facts :

F₁: The circuit includes the battery.

F₂: The wire is metal.

F₃: The circuit includes the bell.

Rules :

R₁: If the circuit includes the battery and the battery is not flat then the circuit is powered.

R₂: If the circuit includes the switch and the switch is on then the circuit is complete.

R₃: If the circuit does not have the switch then the circuit is complete.

R₄: If the wire is metal then the wire is conducting.

R₅: If the wire is plastic then the wire is not conducting.

R₆: If the circuit is powered and the circuit is complete and the wire is conducting then the current runs through the circuit.

Question : The current runs through the circuit.

Answer: True

Proof :

[Clark+ 2020, Saha+ 2020]

• **PRover**

Three sub-task, multi-task learning

- Question answering
- Node prediction
- Edge prediction
- Nodes, edges and answer are independent on each other

$$P(Y = y) \propto \Phi^A(a) \prod_i \Phi^V_i(v_i, a) \prod_{i,j} \Phi^E_{ij}(v_i, a)$$

• **PRobr**

- Undirected graphical model
- Nodes, edges and answer are dependent on each other
- Learning by variational approximation

Our Solution

• Results

- Fully supervised setting: **PRobr > PRover**
- Few-shot & zero shot setting: **PRobr >> PRover**
 - Comparable proof performance
 - Very high QA performance (+ 10%-30%)

Results

-	D	Cnt	QA				PA		FA	
_			RT	PV	PB	PV	PB	PV	PB	
	0	6299	100	100	100	98.4	98.4	98.4	98.4	
Fully supervised	1	4434	98.4	99.0	99.9	93.2	94.3	93.1	94.3	
r any saper need	2	2915	98.4	98.8	99.9	84.8	86.1	84.8	86.1	
	3	2396	98.8	99 .1	100	80.5	82	80.5	82	
	4	2134	99.2	98.8	100	72.5	76.1	72.4	76.1	
_	5	2003	99.8	99.3	100	65.1	72.2	65.1	72.2	
	All	20192	99.2	99.3	99.9	87.1	88.8	87.1	88.8	
	Train Dat		ta	QA		P	PA		FA	
				PV	PB	PV	PB	PV	PB	
		100		99.3	99.9	87.1	88.8	87.1	88.8	
Few-shot		10	%	94.5	99.9	63.6	60.4	63.3	60.4	
	RC	C 5%	76	80.6	99.7	34.0	44.2	32.1	44.2	
		1%	%	70.2	88.2	20.0	21.6	15.1	20.3	
	RQ	30	k s	97.8	99.9	72.5	86.8	72.4	86.8	
		Q 10	k a	87.1	99.9	44.0	72.4	42.7	72.3	
		11	K .	51.3	82.1	28.0	21.1	15.0	18.4	
	Test	Cnt		QA		PA		FA		
<u>.</u>			RT	PV	PB	PV	PB	PV	PB	
	B1	40	97.5	95.0	100.	92.5	100.0	92.5	100.0	
Zero-shot	B2	40	100	95.0	100.	95.0	100.0	95.0	100.0	
2010-3110t	E1	162	96.9	100	100.	95.1	97.5	95.1	97.5	
	E2	180	98.3	100	100.	91.7	93.3	91.7	93.3	
	E3	624	91.8 76 7	89.7	98.2		79.3	71.8	79.3	
	Ľ4	4224	/0./	84.8	95.6	80.6	//./	80.6	//./	
	All	5270	80.1	86.5	96.3	80.7	79.3	80.5	79.3	

