Unsupervised Explanation Generation via Correct Instantiations

Sijie Cheng^{1,2}, Zhiyong Wu¹, Jiangjie Chen², Zhixing Li³, Yang Liu⁵, Lingpeng Kong^{1,4}

 ¹Shanghai Artificial Intelligence Laboratory
 ²Fudan University ³Full Truck Alliance
 ⁴The University of Hong Kong ⁵Tsinghua University Email: sjcheng20@fudan.edu.cn

Explainable Natural Language Processing

Instance	Explanation		
<i>Premise:</i> A white race dog wearing the number eight runs on the track. <i>Hypothesis:</i> A white race dog runs around his yard. <i>Label:</i> contradiction	(highlight) <i>Premise:</i> A white race dog wearing the number eight runs on the track. <i>Hypothesis:</i> A white race dog runs around his yard.		
	(free-text) A race track is not usually in someone's yard.		
<i>Question:</i> Who sang the theme song from Russia With Love? <i>Paragraph:</i> The theme song was composed by Lionel Bart of Oliver! fame and sung by Matt Monro <i>Answer:</i> Matt Monro	(structured) Sentence selection: (not shown) Referential equality: "the theme song from russia with love" (from question) = "The theme song" (from paragraph) Entailment: X was composed by Lionel Bart of Oliver! fame and sung by ANSWER. ⊢ ANSWER sung X		

Table 1: Examples of three explanation types.

Wiegreffe, S. and Marasović, A., 2021. Teach me to explain: A review of datasets for explainable nlp. arXiv preprint arXiv:2102.12060.

Free-text Explanation for False Statements

False Statement	Explanation	Conflict Point
John put an elephant into the fridge.	An elephant is much bigger than a fridge.	Volume
He drinks apple.	Apple can not be drunk.	Function
Jeff ran 100,000 miles today.	No way can someone run 100,000 miles in a day.	Speed
A giraffe is a person.	A giraffe is an animal, not human.	Property
Europe is in France.	Europe is a continent but france is a country.	Geography

Table 2: Examples and their exact conflict points to explain in ComVE task.

• Find the **Conflict Point** where the false statement contradicts the commonsense knowledge.

Wang, C.; Liang, S.; Jin, Y.; Wang, Y.; Zhu, X.; and Zhang, Y. 2020. SemEval-2020 Task 4: Commonsense Validation and Explanation. In SEMEVAL.

- (Supervision) Manually constructing a dataset with conflict points for training is laborintensive and difficult to scale.
- (Explicit Knowledge) Exact triples of conflict points are rare in the external knowledge graph due to their tacitness and diversity.

Provide **guided hints** as prompts to **implicitly** elicit Pre-trained Language Models (PLMs) to reason the conflict point automatically.

Framework

- Phase1 (Correct Instantiations Generation) → Commonality.
- Phase2 (Explanation Generation)
 → Contrast.

The PLMs can implicitly induce the conflict point better to generate explanations.

I. Correct Instantiations Generation

Figure 1: Our proposed two-phase framework NEON.

Phase1: Correct Instantiations Generation

• In-context Learning (Few-shot)

Task: Based on the incorrect statement, generate the correct statement. /* Example 1 */ Incorrect statement: **He drinks apple.** Correct statement: **He drinks milk.** /* Test data */ Incorrect statement: **John put an elephant into the fridge.** Correct statement:

Table 3: The prompt instances of in-context learning in the first phase.

- Constrained Text Generation: CGMH (Unsupervised)
 - Step 1: Where to Edit Conflict Detection.

$$S_{\text{PPL}}^{i} = \frac{\text{PPL}(\boldsymbol{x})}{\text{PPL}(\boldsymbol{x} \setminus \{x^{i}\})}$$

• Step 2: Edit with What – Modification Action.

$$S_{\text{Fluency}} = \prod_{i=1}^{n} P_{\text{LM}}(h^{i}|h^{< i})$$

Miao, N.; Zhou, H.; Mou, L.; Yan, R.; and Li, L. 2019. Cgmh: Constrained sentence generation by metropolis-hastings sampling. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, 6834–6842.

Phase2: Unsupervised Explanation Generation

- In-context Learning (Zero-shot)
 - To purely detect the ability of implicit induction in off-the-shelf PLMs, we explore the model performance without any signals rather than supervised setup.

Given the facts: **1. John put a turkey into the fridge, 2. John put a peach into the fridge, 3. John put a bowl into the fridge,** Explain the following statement based on its difference with the facts: **John put an elephant into the fridge.** The explanation is:

Table 4: The prompt instances of in-context learning in the second phase.

Experiments

- Model: OPT-175B.
- **Datasets:** ComVE & e-SNLI.

Dataset Preferred Explanation (%)				κ	
Dutuset	Original	Tie	NEON		
ComVE e-SNLI	20.33 18.67	42.67 41.67	37.00 39.67	0.47 0.39	
Conflict Point (%)					
ComVE e-SNLI	19.33 15.67	46.00 53.67	34.67 30.67	0.45 0.36	

Table 5: The results of manual evaluation.

Method	ComVE			e-SNLI				
	BLEU	ROUGE	BERTScore	S-BERT	BLEU	ROUGE	BERTScore	S-BERT
Random	1.47	17.81	46.21	42.54	4.94	24.23	50.73	43.05
Retrieval-BM25	1.51	17.23	45.18	38.68	4.29	23.31	49.80	42.09
Retrieval-SBERT	1.69	18.55	46.64	45.47	4.64	24.45	51.16	48.22
Original	1.88	20.21	48.68	51.82	4.71	25.38	50.92	46.39
Ground-truth	2.48	21.25	49.66	55.21	5.57	25.62	51.96	49.19
Top-1	2.42	21.42	49.86	55.03	6.03	25.87	51.97	48.51
NEON w/ CGMH	3.37	20.10	48.92	49.50	4.67	26.04	51.04	48.42
NEON w/ In-context	3.39	22.50	51.50	54.52	6.20	27.28	53.87	51.69

Table 6: The results of automatic evaluation.

- Quality of Generated Instantiations
 - Automatic Evaluation: fine-tune RoBERTa-Large on training datasets as binary classifiers with 88.97 and 84.25 accuracies.

Dataset NEON		Human Generated	
ComVE	70.28	89.60	
e-SNLI	92.30	97.84	

Table 7: The results of automatic evaluation.

• **Manual Evaluation:** i. Acceptability; ii. Grammaticality; iii. Factuality; iv. Diversity; v. Commonality.

Dataset	Acc.	Gram.	Fact.	Diver.	Common.
ComVE	72.80	2.97	2.66	2.63	2.56
e-SNLI	81.67	2.88	2.72	2.89	2.66

Table 8: The results of manual evaluation.

• Effects on Instantiations Number.

#	BLEU	ROUGE	BERTScore	S-BERT
1	2.42	21.03	49.22	52.70
2	2.61	21.14	49.22	52.56
3	3.32	21.32	49.46	51.79
4	3.29	22.26	50.97	54.74
5	3.39	22.50	51.50	54.52
6	3.01	21.49	49.11	49.06
7	3.48	21.57	49.45	49.66
8	3.28	21.27	49.66	49.94
9	3.16	21.70	49.91	48.73
10	3.39	21.21	49.94	49.47

Table 9: Model performance with increasing number of ensemble instantiations in the ComVE task.

• Demonstration of Generality

- Generate explanation for correct statements in the e-SNLI task.
- Directly use the generated correct instantiations as guided hints.

Method	BLEU	ROUGE	BERTScore	S-BERT
Original	8.11	29.73	52.66	53.18
Top-1	9.22	28.64	52.64	50.81
NEON	11.18	31.69	55.30	56.33

Table 10: Model performance of generating explanations for correct statements in the e-SNLI task.

Thanks!

Sijie Cheng