

Ensuring Readability and Data-fidelity using Head-modifier Templates in Deep Type Description Generation

Jiangjie Chen, Ao Wang, Haiyun Jiang, Suo Feng, Chenguang Li and Yanghua Xiao* School of Computer Science, Fudan University, Shanghai, China

Introduction

Motivations

- 1) Previous generative methods pay little attention to the grammatical structure, resulting in grammatical or factual mistakes.
- 2) Head-modifier rule. As a kind of short text, different type descriptions have similar grammatical structures and follows the head-modifier rule.
 E.g. street (head component) in Paris, France (modifier component); library in New York, America; lake in Siberia, Russia; etc.
- 3) Head-modifier template. Generalize infinite type descriptions into finite templates by replacing head and modifier words w/ placeholders (\$hed\$ and \$mod\$).

Contributions

- 1) We propose a new head-modifier template-based method to improve the readability and data fidelity of generating type descriptions, which is also the first attempt of integrating head-modifier rule into neural generative models.
- 2) We apply copy and context gate mechanism to enhance the model's ability of choosing contents with the guidance of templates

Evaluation

Dataset

- *Wiki10K*: proposed by Bhowmik et al (2018), unevenly sampled from *Wikidata*.
- *Wiki200K*: the proposed larger dataset, evenly sampled from *Wikidata*.

Evaluation Metrics

- **Traditional:** BLEU-(1-2), ROUGE-L, METEOR, CIDEr
- **ModCopy (new):** Measures to what extent the informative words are preserved in the modifiers of model's output.
- HedAcc (new): Measures model's ability of predicting the right type of the entity.

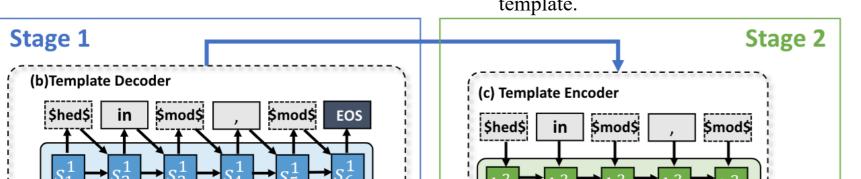
Baseline Models

Models	Description			
AttnS2S	Seq2Seq w/ attention mechanism (Luong et al., 2015).			
Ptr-Gen	Pointer-Generator (See et al., 2017), baseline of copy mechanism. We further construct it into a non-template version of our method.			

Datasets	Wiki10K	Wiki200K
# entities	10,000	200,000
# properties	480	900
vocabulary size	28,785	130,686
# avg statement	8.90	7.96
Copy(%)	88.24	71.30

Table 1: Statistics for both datasets. "Copy(%)" denotes the copy ratio in the golden type descriptions excluding stopwords, which is similar to the metric **ModCopy**.

 We propose a new dataset with two new automatic metrics for this task. Experiments show that our method achieves SOTA performance on both datasets.


Solution

Template Annotation for Training

- 1) The **root** of a noun compound is always the head component in a head-modifier template.
- Acquire templates using Dependency parsing technique w/ Stanford CoreNLP toolkit.

Two-stage Generation

- 1) In Stage 1, the model takes as input an infobox and generates a head-modifier template.
- 2) In Stage 2, the model takes as input the previously encoded infobox and the output template, and produces a type description.
 - Copy mechanism
 - Context gate mechanism

ro	oot	nmod	case pur	appo	25
ROOT	NN	IN	NNP	,	NN
Type Description:	street		paris		france
	head	stop word	modifier	stop word	modifier
Template:	\$hed\$	in	\$mod\$,	\$mod\$

Figure 1: An example of extracting head-modifier template from type description by dependency parsing.

Infobox of <i>rue Cazotte</i>								
PID	Property	Value						
P31	instance of	street						
P138	named after	Jacques Cazotte						
P17	country	France						
P131	located in the administrative territorial entity	Paris						
P47	shares border with	rue Charles-Nodier						
Stage 1 Generate template Shed\$ in \$mod\$, \$mod\$ Stage 2 Generate type description Street in Paris , France								

Figure 2: An example of the two-stage generation of our head-modifier template-based method. \$hed\$ and \$mod\$ are the placeholder for head and modifier components in the template.

Tranformer	Competitive baseline in Seq2Seq task (Vaswani et al., 2017).
DGN	Previously SOTA method regarding this task (Bhowmik et al., 2018).

Automatic Evaluation

Wiki10K							
Model	B-1	B-2	RG-L	METEOR	CIDEr	ModCopy	HedAcc
AttnS2S	53.96	47.56	55.25	29.95	2.753	69.45	52.82
Ptr-Gen	64.24	57.11	65.37	36.42	3.536	83.88	67.92
Transformer	61.63	54.93	63.14	35.01	3.400	75.37	61.13
DGN	63.24	57.52	64.50	35.92	3.372	77.53	64.65
Our work 65.09 58.72 66.92 37.55 3.717 86.04 70.68							
Wiki200K							

VVIKI200K							
Model	B-1	B-2	RG-L	METEOR	CIDEr	ModCopy	HedAcc
AttnS2S	66.15	61.61	70.55	37.65	4.105	49.59	79.76
Ptr-Gen	70.13	66.21	75.21	41.38	4.664	58.27	85.38
Transformer	69.78	66.07	75.60	41.52	4.654	53.85	85.55
DGN	62.60	57.86	69.30	34.84	3.815	48.30	81.31
Our work	73.69	69.59	76.77	43.54	4.847	58.14	85.81

Table 2: Evaluation results of different models on both datasets.

Human Evaluation

• Evaluates Readability based on Grammar Accuracy (G.A.) and Overall Accuracy (O.A.)

Effects of Templates

Entity ID: Q859415

Gold: commune in paris, france Template 1: \$hed\$ in \$mod\$, \$mod\$ Output 1: commune in paris, france Template 2: \$mod\$ \$hed\$ Output 2: commune in france Template 3: \$hed\$ \$mod\$ Output 3: commune

Model	G.A.	<i>O.A.</i>	M.C.	H.A.
AttnS2S	92.25	50.50	51.53	80.27
Ptr-Gen	90.00	65.00	62.50	88.01
Transformer	95.25	58.00	55.70	89.67
DGN	89.50	56.00	47.29	81.37
Our work	96.50	66.25	61.32	90.29

Table 3: Results of manual evaluation as well as two proposed metrics.

Entity ID: Q18758590 Gold: italian architect and teacher Template 1: \$mod\$ \$hed\$ and \$hed\$ Output 1: italian architect and architect Template 2: \$mod\$ \$hed\$ Output 2: italian architect Template 3: \$hed\$ \$mod\$ and \$mod\$ Output 3: italy and teacher

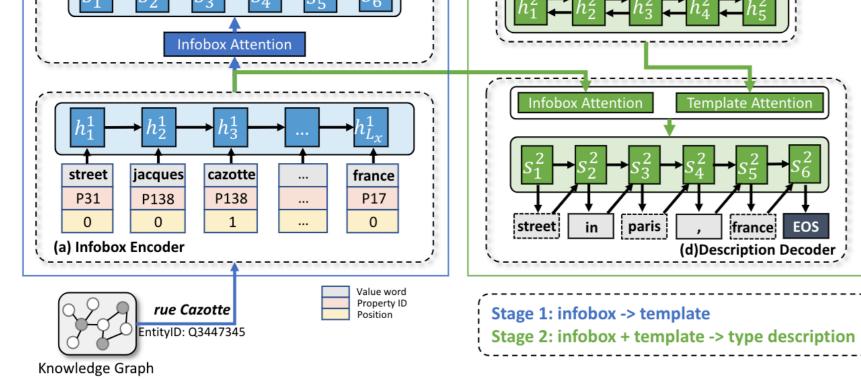


Figure 3: Overall architecture of our method. In Stage 1, the model generates a template from infobox of entity *rue Cazotte* (the entity can be found at Wikidata by EntityID), then in Stage 2 the model completes this template by reusing the infobox and generates a type description for this entity.

Loss of both stages

$$\mathcal{L} = -\sum_{i=1}^{L_t} \log p(t_i | t_{< i}, \mathcal{I}) - \sum_{i=1}^{L_y} \log p(y_i | y_{< i}, \mathcal{I}, \mathcal{T})$$

Table 4: Examples of replacing templates. Template 1's are the initial generated templates, while the remaining ones are produced by the authors. We use **bold** to denote the heads and use *italic red* to denote mistaken words.

Conclusion

- 1) We propose a head-modifier template-based type description generation method, with a larger dataset and two metrics designed for this task.
- 2) Experimental results demonstrate that our method achieves state-of-the-art performance over baselines on both datasets while ensuring data fidelity and readability in generated type descriptions.
- 3) Further experiments regarding the effect of templates show that our model is not only controllable through templates, but resilient against wrong templates and able to correct itself.

Future Work

Aside from such syntax templates, in the future, we aim to explore how semantic templates contribute to type description generation.

Fudan Knowledge Works