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Abstract. In a practical TableQA system, response generation is a critical mod-
ule to generate a natural language description of the SQL and the execution result.
Due to the complex syntax of SQL and matching issues with table content, this
task is prone to produce factual errors. In this paper, we propose FALCON, a
FAithfuL CONtrastive generation framework to improve the factual correctness
of generated responses. FALCON forces the generation model to identify exam-
ples with factual errors in the latent space during training and takes contrastive
examples into consideration during inference. We also propose two new auto-
matic metrics to further evaluate faithfulness specialized to this task. Experimen-
tal results show FALCON brings a favorable performance improvement on both
automatic and human evaluation amongst various baseline methods (The code of
FALCON is released at https://github.com/whuFSN/FalCon).

Keywords: Response generation · Factual correctness · Contrastive learning

1 Introduction

With extensive research on the Natural Language Interface of Databases (NLIDB),
semantic parsing task has made significant progress in recent years [4,12,27,31]. How-
ever, in a practical TableQA system [37], response generation (RG) is also a critical
module to interact with users’ natural language questions. As shown in Fig. 1, a practi-
cal TableQA system consists of semantic parsing and response generation module. RG
requires generating a natural language description of the SQL and the execution result.
In general, we argue that such a response generation module is necessary due to the
following two reasons: 1) The generated response could help users verify whether the
query result is consistent with the original question; 2) The generated response provides
a concise and easy-to-understand summary about the result table.

However, previous SQL-Interface-related studies rarely investigate RG in any sys-
tematic way. Previous work [3,13,33] mainly focus on the SQL-to-Question task, which
generates natural language descriptions interpreting the meaning of a given SQL. Dif-
ferent from SQL-to-Question, the unique challenges of RG lie in: 1) In addition to the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13247, pp. 197–212, 2022.
https://doi.org/10.1007/978-3-031-00129-1_13



198 S. Fang et al.

Fig. 1. An illustration of a TableQA system, which consists of semantic parsing and response
generation module. RG takes the SQL and result table as input to generate the response. The
unfaithful response is highlighted in red, which is not factually consistent with the input. (Color
figure online)

SQL, RG also takes the execution result as input, which needs an explanation of table
content; 2) The benchmark of RG is CoSQL [35], which includes more complex SQL
grammar (e.g., nested queries, multi-table queries).

Besides fluency and grammaticality, factual correctness is also an important fac-
tor when evaluating the quality of generated responses. While advanced Natural Lan-
guage Generation (NLG) techniques have been successful in producing fluent text, these
methods still face great challenge caused by factual incorrectness [11,17]. As shown in
Fig. 1, an unfaithful response is easily generated by T5 [26], a popular pre-trained gen-
eration model, which misunderstands the “youngest teacher” as the “oldest teacher”.
This error implies that the generic T5 is unaware of sorting by age (in ascending order)
specified in the input SQL. Unfortunately, such an error is not accidentally generated.
Our new task has several inherent properties that make models prone to produce fac-
tual errors. First, responses contain rich logical information, which is mainly specified
in aggregate functions (e.g., MAX), logical operators (e.g., <), and abstract fields (e.g.,
dept name) in SQL. Second, content matching between SQL and the table is also a
challenge.

In this paper, we propose a FAithfuL CONtrastive generation framework (FALCON)
to improve factual correctness of generated responses. Contrastive learning [6,24,30]
learns representations by contrasting positive pairs and negative pairs. We intention-
ally introduce contrastive learning into RG to handle factual errors. Specifically, we
utilize a series of heuristic rules to construct samples with factual errors which we
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call imposters. During training, in addition to optimizing naive training objective, our
models attempt to distinguish between imposters and ground truths in the latent space.
During inference, an imposters-contrastive decoding method is proposed to avoid gen-
erating unfaithful responses.

We also proposed two metrics to evaluate the faithfulness of generated responses.
Previous research [10] has shown that ROUGE [20], a widely used metric based on n-
gram overlap, is not always a valid factuality metric. This motivates us to propose two
new faithfulness-aware metrics. The first metric is Logical Score, which mainly reflects
the logical matching degree between the generated response and input SQL. Specifi-
cally, we parse the generated response into SQL components by a trained Response-
to-SQL model. Then Logical Score is obtained by calculating the matching degree
between parsed SQL and input SQL. The second metric is Consistency Score, which
is estimated by a consistency classifier trained on positive and negative samples. This
metric represents the consistency between the generated response and the input.

In brief, our contributions can be summarized as follows:

– We are the first work to formulate the response generation task in a TableQA sys-
tem. Focusing on factual correctness, we propose a faithful contrastive generation
framework (FALCON) to boost the faithfulness of responses.

– Two metrics, Logical Score and Consistency Score, are proposed to evaluate the
factual correctness of generated responses. Experiments show they have a high cor-
relation with human judgment.

– Extensive evaluations demonstrate the state-of-the-art (SoTA) performance of FAL-
CON on both automatic and human evaluation.

2 Related Work

SQL-to-Question. A natural language generation task that generates a natural language
description from the SQL. Iyer et al. [14] employ LSTM networks with attention to
generate descriptions of the SQL which regards the SQL as a sequential text. Xu et al.
[33] represent the SQL as a directed graph and use a Graph2seq model to encode this
graph-structured SQL. Cai et al. [3] leverage the syntactic structure of abstract syntax
trees (AST) to encode the SQL with a novel type-associated encoder.

Factual Correctness. Previous work on factual correctness focus on the summariza-
tion task. Cao et al. [5] propose to improve summarization models by leveraging open
information extraction. Falke et al. [9] apply natural language inference to evaluate the
factual correctness of the generated summaries. Zhang et al. [39] utilize reinforcement
learning to optimize the faithfulness of radiology summaries, whose reward is obtained
from a trained fact extractor. In the Data-to-Text task, Wang et al. [32] generate a faith-
ful table description by introducing a new table-text optimal-transport matching loss
and a table text embedding similarity loss.

Contrastive Learning. Contrastive learning is to learn representations by contrasting
positive pairs and negative pairs. Contrastive representation learning builds a genera-
tive model to score positive samples higher than negative samples in computer vision
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[6,24]. Contrastive learning also has many applications in natural language processing.
To learn a sentence’s representation, Lajanugen et al. [23] take its consecutive sen-
tences as positive samples and sentences from another document as negative samples.
By assigning a higher probability to a ground-truth translation than erroneous transla-
tion, Yang et al. [34] apply contrastive learning to reducing word omission errors in
machine translation. The gradient-based method [18], which constructs positive and
negative pairs automatically, is proposed to tackle the exposure bias problem.

3 Task Definition and Preliminary

In this section, we formally define the response generation task, and then we describe
the backbone model under Sequence-to-Sequence (Seq2Seq) architecture to tackle the
task.

Given the input X including a SQL S and a result table T , our goal is to generate
the corresponding response Y . The SQL S is represented as a token sequence S =
s1, s2, ..., s|S|. The table T = {Ti,j |1 ≤ i ≤ RT , 1 ≤ j ≤ CT } has RT rows and CT

columns with each Ti,j being the content in the (i, j) cell. Ti,j could be a word, a phrase
or a number. The annotated response is Y = y1, y2, ...y|Y |. We aim to train a response
generator p(Y |X) to generate response fromX . The generated response is expected to
be both fluent and faithful.

Modeling the response generation task under Seq2Seq paradigm, we choose T5
[26], a strong pre-trained generation model as our backbone model. In fact, FALCON

can also be applied to other Data-to-Text methods, as shown in our experiments. Fol-
lowing previous work on linearizing table as natural language [7], we use template to
flatten the table T as a paragraph TL = t1, ..., t|TL|. If the result table is empty, we
use “No, there is no result” to represent the result. Then we concatenate SQL S and
linearized table TL as a complete sequence input X = x1, ..., x|X|.

A typical approach to train T5 is to minimize the negative log-likelihood (NLL) of
the target sequence Y , which we refer to as Lnll.

Lnll = −
|Y |∑

t=1

log p(yt|X, y<t)

p(yt|X, y<t) = softmax(WhD
t + b)

hD
t = Decoder(y<t,HE)

HE = Encoder(X)

(1)

where HE = [hE
1 , ...,hE

|X|] ∈ Rd×|X| is the concatenation of hidden state of input

tokens and HD = [hD
1 , ...,hD

|Y |] ∈ Rd×|Y | is the concatenation of hidden state of
output tokens. d is the hidden size of T5.

4 Proposed Approach

First, we describe the method of constructing imposters, which are crucial for the per-
formance of FALCON. Then we introduce our faithful contrastive generation framework
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Table 1. Examples of constructing imposters through text transformations. Blue and red text
highlight the changes made by the transformation.

Transformation Original sentence Transformered sentence

Construct X̃ SELECT f id FROM files

WHERE formats = "mp4"

UNION SELECT f id FROM

song WHERE resolution >
720

SELECT f id FROM files

WHERE formats = "mp4"

EXCEPT SELECT f id FROM

song WHERE resolution >
720

SELECT address FROM

member WHERE age < 30

SELECT address FROM

member WHERE age > 30

SELECT MAX ( Length ) FROM

roller coaster

SELECT MIN ( Length )

FROM roller coaster

SELECT name FROM country

ORDER BY surfacearea DESC

LIMIT 1

SELECT name FROM country

ORDER BY surfacearea ASC

LIMIT 1

SELECT AVG ( salary )

FROM instructor

SELECT AVG ( salary )

FROM dept name

Construct Ỹ The number of drivers who are from
Hartford City or younger than 40 is 11

The number of drivers who are from
Hartford City or older than 40 is 11

The average damage for all storms is
11.0629 million USD

The maximum damage for all
storms is 11.0629 million USD

The average damage for all storms is
11.0629 million USD

The average storm for all storms is
11.0629 million USD

(FALCON) as shown in Fig. 2, which consists of two major components: contrastive
training and contrastive inference. Finally, we elaborate on twometrics to evaluate faith-
fulness.

4.1 Imposters Construction

To make the model subject to factual constraints when learning to generate target
sequence, we construct negative samples that are syntactically identical but have sig-
nificant differences in factual correctness, which we call imposters.

Given a pair (X,Y ), we construct imposters through a series of predefined trans-
formations. To be specific, source imposter X̃ is obtained by modifying original input
X , and original output Y is modified to yield target imposter Ỹ . Consequently, a tuple
(X,Y, X̃, Ỹ ) is constructed to be applied to FALCON. As shown in Table 1, we utilize
following heuristic rules to construct imposters.

Construct Source Imposter X̃: Some keywords play the same role in SQL syntax. When
the original keyword is replaced by other keywords, the query intention or condition
of SQL will change. Apparently, the modified SQL is factually inconsistent with the
original output. Specifically, 1) replace the UNION, INTERSECT, and EXCEPT with
another one of the above keywords. e.g., UNION to EXCEPT; 2) replace comparison
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Fig. 2. An illustration of FALCON, which consists of contrastive training and contrastive infer-
ence. In contrastive training, the backbone model is enforced to pull factually consistent pairs
(X,Y ) together and push the factually inconsistent pairs (X̃, Y ), (X̃, Y ) apart in the latent
space. In contrastive inference, FALCON generates a more faithful response by referring to the
token probability distribution of source imposter X̃ .

operators (>,<,≥,≤, ! =) with another comparison operators. e.g., > to <; 3) replace
aggregation keywords (MAX, AVG, MIN, COUNT, SUM) with another aggregation key-
words. e.g., MAX to MIN; 4) replace order keywords (ASC, DESC) with another order
keywords. e.g., DESC to ASC; 5) use string-match based method to recognize columns
and tables mentioned in the response, then replace it with another column or table1.

Construct Target Imposter Ỹ : We modify the logical expression involved in the
response so that the modified response is inconsistent with the original input. Specif-
ically, 1) use string-based methods to locate comparative and superlative and replace
them with antonyms. e.g., younger to older; 2) replace the tokens that represent aggre-
gate keywords. e.g., average to maximum; 3) replace the span mentioned in SQL or
table with another randomly sampled span.

4.2 Contrastive Training

We argue that the generation model should be restricted by factual consistency in the
latent space. To achieve this, FALCON encourages the latent semantics of the ground
truth response to be consistent with the SQL and table. Specifically, given a pair of input
and output (X,Y ), we first project the original input and output to the latent space:

hE = MeanPool(Relu(WEHE + bE))

hD = MeanPool(Relu(WDHD + bD))
(2)

1 Synchronously modify headers and values in the result table.
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where hE ,hD ∈ Rd represent the latent representation of input and output. WE and
WD are the source and target projection matrix, respectively. MeanPool denotes aver-
age pooling operation. Then we calculate their consistency C(X,Y ) in the latent space:

C(X,Y ) = σ(WC [hE ;hD] + bC)) (3)

whereWC ∈ R2∗d and bC ∈ R are learnable parameters. σ is the sigmoid function and
[·; ·] denotes the operator of vector concatenation.

Models not only learn from faithful examples but also benefit from identifying
imposters. Hence, given a tuple (X,Y, X̃, Ỹ ) where X̃ and Ỹ are the source and tar-
get imposter, FALCON enforces the model to provide a lower consistency score for
imposters than ground truth.

For the target imposter Ỹ , we first compute its representation h̃D in the latent space
given original input X:

h̃D = MeanPool(Relu(WDH̃D + bD))

h̃D
t = Decoder(ỹ<t,HE).

(4)

Then the consistency C(X, Ŷ ) between original input X and target imposter Ỹ is
obtained. According to the principle that a consistent pair should be assigned a higher
score, we adopt margin ranking loss [1] to separate original output and target imposter.

Lt = max(0, δ − C(X,Y ) + C(X, Ỹ ))

C(X, Ỹ ) = σ(WC [hE ; h̃D] + bC))
(5)

where margin δ is the hyper-parameter.
For the source imposter X̃ , we obtain its latent representation h̃E through the

encoder. Then FALCON requires the model to distinguish between original input and
source imposter in the latent space.

Ls = max(0, δ − C(X,Y ) + C(X̃, Y ))

C(X̃, Y ) = σ(WC [h̃E ;hD] + bC))

h̃E = MeanPool(Relu(WEH̃E + bE))

H̃E = Encoder(X̃).

(6)

The overall optimization object is as follows:

L = Lnll + α(Ls + Lt) (7)

where the contrastive weight α controls the relative importance of contrastive learning.

4.3 Contrastive Inference

A typical decoding approach is that when decoding the t-th step, we compute the prob-
ability distribution of each token on target vocabulary V . p(ykt |X, y<t) represents the
probability of the k-th token Vk on vocabulary at step t:

p(ykt |X, y<t) = p(yt = Vk|X, y<t). (8)
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We argue that referring to the token probability distribution of source imposter X̃
can help improve faithfulness. Therefore, we propose an imposters-contrastive decod-
ing method to generate more faithful responses. We first obtain the imposter X̃ of the
original input X through the construction method2 mentioned in Subsect. 4.1. Intu-
itively, we should encourage tokens to be generated based on the original input, while
suppressing the token probability generated by the source imposter.

Then we compute the proportion of the token Vk probability generated by the orig-
inal input X compared to the source imposter X̃:

αk
t =

exp p(ykt |X, y<t)
exp p(ykt |X, y<t) + exp p(ykt |X̃, y<t)

. (9)

By setting a threshold of ρ > 0.5, for token Vk with αk
t greater than ρ, it means

that it’s generated specifically based on the original input compared to imposter, which
should be encouraged. Therefore, we increase the probability of these tokens to generate
words that are more consistent with the original input:

δkt =

{
λαk

t p(yt|X, y<t), αk
t ≥ ρ

0, αk
t < ρ

(10)

where λ is the hyper-parameter to control the impact of imposter on responses genera-
tion. δkt is the probability increment.

The final probability of the k-th token is computed as:

p′(ykt |X, X̃, y<t) = p(ykt |X, y<t) + δkt . (11)

4.4 Metrics

In this subsection, we introduce two metrics inspired by two principles to evaluate faith-
fulness of generated responses.

Principle 1. The generated response should contain the logical information of the
input SQL, including the query intent and condition.

Logical Score. According to principle 1, we train a model to parse the response into
SQL. Through this model, the generated response is translated into various components
of SQL. Then we conduct a fine-grained matching between the parsed SQL and the
input SQL to compute its logical accuracy. Specifically, we adopt BRIDGE [21], the
SoTA Text-to-SQL semantic parser on Spider [36], as our Response-to-SQL model.
Following previous Text-to-SQL evaluation methods [40], we employ Exact Match as
the logical score to measure the logical accuracy between the generated response and
the original SQL.

Principle 2. A model that can distinguish between ground truth and imposter should
be able to evaluate the correctness of the generated response.

2 We only use the first three rules for constructing source imposters when inference.
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Consistency Score. According to principle 2, we build a consistency classifier to score
the generated response. Given a tuple (X,Y, X̃, Ỹ ) constructed from Sect. 4.1, (X,Y )
is a consistent pair as our positive example. (X̃, Y ) and (X, Ỹ ) are inconsistent pairs
as negative examples. A RoBERTa-based [22] consistency classifier is trained to dis-
tinguish whether the response is factually consistent with the given SQL and result.
Specifically, taking the concatenation of SQL, linearized table, and response as input,
this classifier predicts whether the generated output is a faithful statement about the
input. We employ the average predicted score as the consistency score.

5 Experiments

In this section, we conduct several experiments to demonstrate the effectiveness of our
method.

5.1 Dataset

CoSQL. We evaluate FALCON on CoSQL [35], consisting of 7845/1074 examples
for train/development. Each example includes the SQL, the result table, and the cor-
responding response. Different from WikiSQL [40], the SQL in CoSQL have follow-
ing complex syntax: 1) multi-table queries; 2) nested queries; 3) advanced keywords
(HAVING, ORDER BY, UNION, DISTINCT, LIMIT, etc.)

5.2 Baselines

We apply FALCON to several competitive generation models. Due to the lack of rele-
vant baselines, we extend some Data-to-Text methods to adapt to this task. These meth-
ods can be divided into two categories, one is structure-based methods, and the other
is textual-based methods. Structure-based methods can explicitly encode the internal
structure of SQL and table to generate high-quality text.

– GraphWriter [16]: A Graph-to-Text generation model that utilizes a graph network
to encode the knowledge graph (KG) and RNN to encode its title. We parse the SQL
into an Abstract Syntax Tree (AST) as the input KG and take the linearized table as
its input title.

– GTN [2]: A Graph Transformer that uses explicit relation encoding and allows direct
communication between two distant nodes. Following [41], we convert the result
table into a graph. Then we use a global node to connect it to the AST as the entire
input graph.

Based on the Seq2Seq architecture, textual-based methods take the sequential SQL
and the linearized table as input to generate the response.

– Transformer [29]. A representative model of neural machine translation. We add
the copy mechanism to enable the model to copy words from the input.

– BART [19]: A pre-trained language model (PLM) which is pre-trained as a text-to-
text denoising autoencoder. We use BART-base in this paper.

– T5 [26]: A PLM which converts every language problem into a Text-to-Text format.
We use T5-small in this paper.
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5.3 Implementation Details

First, we try our best to adjust the hyper-parameters so that the backbone model has a
relatively optimal performance. Then according to the same hyper-parameter settings,
we apply FALCON to improve the factual correctness. Taking backbone model T5 as an
example, we optimize models by Adam [15] with a learning rate of 5e−5 and the batch
size of 32. The margin δ is set to 0.6 and α is set to 5.0. During inference, the greedy
search is adopted to decode the response and the maximum decoding length is 25. λ
and ρ are set to 0.2 and 0.8, respectively.

To train the Response-to-SQL model, we follow the same hyper-parameter settings
as [21] except that the batch size is changed to 12. In order to filter out trivial responses
like “yes”, we discard the top 20% of the samples with the lowest edit distance between
its SQL and response in the dataset. We also add Question-to-SQL examples from spi-
der [36] to train set because we found it can significantly improve its performance.
Finally, its exact match accuracy on the development set is 61.7%.

We train the consistency classifier with RoBERTa-base [22]. The synthetic train set
includes 7,845 positive samples and 13,250 negative samples. 1,074 positive samples
and 1,778 negative samples are included in the synthetic development set. On the syn-
thetic development set, the classifier has an 86.5% F1-score.

5.4 Evaluation Metrics

Following the common practice, we illustrate the n-gram based BLEU [25] and
ROUGE-L [20] evaluations to evaluate the quality of our generated response. We also
evaluate the results using BERTScore [38] and BLEURT metric [28], which employ
contextual embeddings to incorporate semantic information. Logical Score and Consis-
tency Score are also used to evaluate the faithfulness of generated responses.

We invited three graduate students majoring in CS as experiment participants. Each
of them is familiar with SQL. To ensure accurate human evaluation, the raters are
trained with word instructions and text examples of the grading standard beforehand.
Specifically, Two annotators are first asked to evaluate fluency and faithfulness for 600
samples separately. Then they re-check each other’s results. If two annotators have con-
flicts, we will send these samples to the third annotator for final judgment. The follow-
ing are detailed criteria for evaluating fluency and faithfulness.

Fluency

– 0: The response is smooth and natural.
– 1: The response does not flow smoothly but people can understand its meaning.
– 2: The response is not fluent at all.

Faithfulness

– 0: The response has no factual errors.
– 1: The response has a factual error.
– 2: The response has more than one factual error.
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Table 2. Evaluation results of the different models on automatic metrics. “+FALCON” means the
model is trained using FALCON. L-Score and C-Score denote Logical Score and Consistency
Score, respectively. BLEURT-T and BLEURT-B denote BLEURT-Tiny and BLEURT-Base. The
best results in each group are highlighted in bold.

BLEU ROUGE BERTScore BLEURT-T BLEURT-B L-Score C-Score

GraphWriter 16.86 47.44 37.42 −27.68 −58.43 28.70 55.04

Graphwriter+FALCON 17.06 48.39 38.30 −24.28 −57.30 30.48 55.26

GTN 18.31 51.55 46.68 0.20 −27.95 35.46 66.49

GTN+FALCON 18.70 51.48 47.34 1.53 −25.84 37.19 67.81

Transformer 12.88 43.42 32.05 −23.52 −66.50 17.61 43.52

Transformer+FALCON 13.13 43.62 32.60 −21.98 −63.96 17.89 43.76

BART 24.60 57.39 58.72 22.38 9.28 54.10 83.96

BART+FALCON 24.73 57.51 59.12 23.36 9.60 54.79 84.52

T5 25.25 57.54 57.89 22.40 6.74 53.79 85.46

T5+FALCON 25.65 57.89 58.41 23.92 7.76 54.32 85.58

6 Result and Analysis

6.1 Performance on Automatic Metrics

Table 2 presents the automatic evaluation results of different backbone models with
conventional NLL training and FALCON3. On the whole, applying FALCON to different
models consistently improves the factual correctness of generated responses.

Specifically, FALCON slightly improves the performance of models on BLEU and
ROUGE. This is reasonable because these metrics measure the n-gram overlap between
a reference response and candidate response, which are not always valid factuality met-
rics [10]. Even so, applying FALCON to GraphWriter improve 0.20 on BLEU and 0.95
on ROUGE.

FALCON has achieved noticeable improvements on BERTScore and BLEURT.
Such PLM-based metrics reflect the factual correctness by matching semantic infor-
mation in the embedding space [10]. FALCON has achieved an average improvement of
1.42 points on BLEURT-Base, which is a favorable performance boost. These improve-
ments demonstrate that by encouraging the model to distinguish well-designed con-
trastive pairs, the model learns a more robust representation and produces responses
that are more faithful to the input.

Applying FALCON has improved each model on Logical Score and Consistency
Score. FALCON has achieved an average improvement of 1.00 points on Logical Score
and 0.49 points on Consistency Score. The improvement of Logical Score shows that
FALCON has produced a response that is more logically consistent with the input SQL.
The enhancement of Consistency Score indicates that the response generated by FAL-
CON is more consistent with the input.

3 We report the average best performance observed in 3 runs on the development set of CoSQL
since its test set are not public. All improvements of FALCON are significant with p < 0.01
compared to backbone models.
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Table 3. Human evaluation on fluency and faithfulness. Both metrics are the smaller the better.

Fluency Faithfulness Kappa

GraphWriter 1.23 1.32 0.69

Graphwriter+FALCON 1.02 0.98 0.72

GTN 0.86 0.84 0.64

GTN+FALCON 0.71 0.65 0.53

T5 0.45 0.52 0.61

T5+FALCON 0.35 0.27 0.71

Table 4. Ablation study of our framework components using T5. “C-inference” means using
contrastive inference, “S-imposter” means using source imposters, “T-imposter” means using
target imposters, and “C-training” means training T5 with both source and target imposters.

BLUERT-T BLEURT-B L-Score C-Score

(a) T5 22.40 6.74 53.79 85.46

(b) w/ C-inference 22.78 6.90 54.23 85.55

(c) w/ S-imposter 22.97 7.78 54.03 85.61
(d) w/ T-imposter 22.59 7.48 53.91 85.27

(e) w/ C-training 23.41 7.66 54.12 85.46

(f) Full version 23.92 7.76 54.32 85.58

6.2 Performance on Human Evaluation

FALCON Performance We further conduct extensive human evaluations of generated
responses. Generation results of six models on 100 samples are provided to three stu-
dents for blind testing to evaluate the fluency and faithfulness.

Table 3 presents evaluation results and Cohen’s kappa scores [8] to measure the
intra-rater reliability. With FALCON, T5 has reduced the average number of factual
errors per response from 0.52 to 0.27. In general, applying FALCON to GTN and T5
has achieved significant improvement in the faithful aspect, which demonstrates our
framework’s effectiveness to boost factual correctness.

Metrics Performance. We also measure the correlation (Pearson’s r) between the faith-
fulness and two new metrics. The correlation coefficient between Logical Score and
faithfulness is −0.68 (with p < 0.05), and −0.71 (with p < 0.05) is the correlation
coefficient of Consistency Score. This result reveals they have a relatively high cor-
relation with human judgment on faithfulness, which illustrates their effectiveness to
evaluate the faithfulness of responses.

6.3 Model Analysis

Effect of Contrastive Training. To constrain the model with factual correctness, we
require the model to distinguish ground truths from imposters in the latent space when
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Fig. 3. Evaluation results with different contrastive weight α and margin δ using T5.

training. (a) and (e) in Table 4 demonstrates the impacts of contrastive training. It is
observed that with contrastive training, the model improves the performance on all of
the automatic metrics, including two new metrics to evaluate faithfulness. We also
explore the effects of source imposters and target imposters on the performance of
the model. As shown in Table 4 (c) and (d), training with source imposters or tar-
get imposters leads to a consistent performance improvement, which suggests that the
model can benefit from perceiving factual differences during contrastive training.

Effect of Contrastive Inference. We propose contrastive inference to generate more
faithful responses from contrasting source imposters. Comparing (a) and (b) demon-
strates that using contrastive inference leads to a consistent performance increase. Com-
paring (e) and (f) also shows that contrastive inference contributes to improve the factual
correctness of the generated responses.

Impact of Hyper-parameter α and δ. As shown in Fig. 3, we explore the impact of
using different contrastive weight α and margin δ. We observe that as α or δ increase,
the performance of T5 with FALCON presents an earlier increase and later decrease
trend. The increase of the two hyper-parameters means that the importance of contrast
learning boosts. We conjecture that a higher contrastive learning loss allows the model
better distinguish imposters from ground truths, meanwhile it also risks failing to fit the
original response.

6.4 Case Study

As shown in Fig. 4, we further demonstrate several typical examples for better under-
standing how our framework boosts faithfulness. Each example includes an input
including SQL and table, a reference response (Ref), the T5 output (T5), and the gen-
erated response by our approach (T5+FALCON).
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Fig. 4. Examples of generated responses from T5 and T5 with FALCON. The red color indicates
factual errors in generated responses. Text in blue emphasizes the role of FALCON in improving
factual correctness. (Color figure online)

In the first example, T5 fails to understand the condition that sort players by earn-
ing in ascending order and incorrectly generates a response with “highest earning”.
The reason can be that the “highest” occurs frequently in the training corpus. On the
other hand, with the contrastive examples’ constraint, FALCON guides T5 to generate a
faithful response with the key fact “lowest”.

The second example shows a similar situation, where T5 generates a grammatically
correct response but with factual errors. “above age 40” is incorrectly translated as
“younger than 40”. The possible reason is that “40” is incorrectly associated with the
operator < in the latter part of SQL. FALCON helps recover the correct meaning: with
age above 40”.

7 Conclusion

We propose a faithful contrastive generation framework FALCON to improve responses’
factual correctness in a TableQA system. Our framework includes contrastive train-
ing and contrastive inference. To better evaluate faithfulness, we propose two met-
rics. Extensive evaluations show FALCON brings a favorable performance improvement
amongst various baseline methods.
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