
The Motivations of This Work 
🏆  for Reasoning: Being Right for the Right Reasons 
🕵  Rationalize reasoning with rationales that reveal the 
analogical reasoning process 
🤔  Human-like analogical reasoning requires human-level 
analogical benchmarks
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Introduction

If you have any questions, please email: jjchen19@fudan.edu.cn

The E-KAR Benchmark Preliminary Explorations
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Contributions

We propose a novel benchmark E-KAR (Explainable Knowledge-
intensive Analogical Reasoning) for rationalizing natural language 
analogical reasoning, which is: 

❖ Challenging: E-KAR requires intensive commonsense, factual 
and cultural knowledge to solve, as well as reasoning skills. 

❖ Explainable: E-KAR is manually annotated with free-text 
explanations based on structure-mapping theory to justify 
analogical reasoning. 

❖ Bilingual: E-KAR is in both Chinese and English.

Bilingual | Chinese & English

Challenging | Sourced from Civil Service Exams

Verbalize the process into free-text.

Explainable | Manual Free-text Explanations
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Task: Word Analogy Recognition 
From linear analogy to complex analogy 
Benchmarking and explaining complex and knowledge-
intensive analogical reasoning.

Complex Analogy

The Limitations of Previous Work 
Methods: Hold a connectionist assumption 

 
Benchmarks: Evaluate pre-trained word representations for 
linear analogy 

Binary Relations: Lexical, morphological, semantic. 
Not explainable

⃗king − ⃗man + woman = ⃗queen

Abduction Mapping Validation

How to rationalize analogical reasoning?

How to design and acquire the rationales?

term1 term2

Nationality

term2 term3

Container for holding term1
is_a is_a

term2 term3

transport term1

1.Linguistic knowledge 
2.Commonsense knowledge 
3.Encyclopedic/factual knowledge 
4.Cultural knowledge 
5.Relations of three terms 
6.Negated facts

Why are analogical problems from CSE challenging?
Knowledge-intensive term relations

husband:job 
•Husband is not a job. 

car:tires 
•A car is not made of tires.  
•A car consists of tires.

Translation & 
Post-editing

Civil 
Service 

Exams of 
China

Chinese 
#Problems=1665 
#Expl.=5 1665×

English 
#Problems=1251 
#Expl.=5 1251×

Data 
Collection, 

Filtering and 
Quality 
Control

Task 2: Explanation 
Generation

Task 1: Analogical 
Question Answering

• Task type: text generation 
• Input: Query + Candidates 
• Output: Free-text explanations for 

both query  and candidates  

• Evaluation:  
–ROUGE, BERTScore, … (unreliable) 
–Rationalized QA Acc. (Acc. with )
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Two Shared Tasks

• Task type: multiple-choice 
question answering 

• Input: Query + Candidates 
• Output: Correct Choice 
• Evaluation:  

– QA Acc.

🌟
Better metrics for explanations needed !

Lesson 1: W2Vs and LMs both struggle at complex analogical 
reasoning.

Lesson 2: Generative LMs struggle at rationalizing analogical 
reasoning.
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outperform 
SOTA models by 
large margins.
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Most QA errors occur on semantic 
relations, which demands heavily on 
commonsense and factual knowledge 
and reasoning skills.
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1.Poor quality of generated 
explanations, improvement 
over baseline but fall far 
behind gold. 

2.Gold explanations can be 
exploited by Analogical QA 
models to achieve nearly 
perfect results (97.7%).

Error Analysis 
1.Unable to generate negated facts 

for refutation. 
2.Generating factually incorrect 

statements. 
3.Biasing towards common patterns.
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