36TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE A VIRTUAL CONFERENCE FEBRUARY 22 - MARCH 1, 2022

Unsupervised Editing for Counterfactual Stories

Jiangjie Chen^{1,3}, Chun Gan², Sijie Cheng¹, Hao Zhou³, Yanghua Xiao¹, Lei Li⁴

AAAI-22

UC SANTA BARBARA

Automatic Story Writing

"I want some steak ?"

"It's a sunny day, let's go out"!"

"Nice steak they have "?

Automatic Story Re-Writing

"Ohe, I hate rainy days."

"What should I do?"

"I might as well cook it myself ?"

Counterfactual Story Rewriting for Creative NLG

The *Trade-off*: Minimal-edits vs. Coherence

Can we rewrite a new story ending with **minimal edits**?

The *Trade-off*: Minimal-edits vs. Coherence

Can we rewrite a new story ending with **minimal edits**?

For **pre-trained LMs**, massive editing can almost certainly lead to a coherent ending.

The *Trade-off*: Minimal-edits vs. Coherence

Can we rewrite a new story ending with minimal edits? Also do it without

How does Previous Method Solve this Problem?

Qin, Lianhui, Vered Shwartz, Peter West, Chandra Bhagavatula, Jena Hwang, Ronan Le Bras, Antoine Bosselut, and Yejin Choi. **Back to the future: Unsupervised backprop-based decoding for counterfactual and abductive commonsense reasoning.** EMNLP 2020

How does Previous Method Solve this Problem?

Qin, Lianhui, Vered Shwartz, Peter West, Chandra Bhagavatula, Jena Hwang, Ronan Le Bras, Antoine Bosselut, and Yejin Choi. **Back to the future: Unsupervised backprop-based decoding for counterfactual and abductive commonsense reasoning.** EMNLP 2020

How does Previous Method Solve this Problem?

Qin, Lianhui, Vered Shwartz, Peter West, Chandra Bhagavatula, Jena Hwang, Ronan Le Bras, Antoine Bosselut, and Yejin Choi. **Back to the future: Unsupervised backprop-based decoding for counterfactual and abductive commonsense reasoning.** EMNLP 2020

Original Ending

24

Counterfactual Ending

Structured Causal Model

Structured Causal Model

Estimating Potential Outcome After Intervention — Causal Risk Ratio

Causal Risk Ratio:

CRR =
$$\frac{P(Y = y | do(X = x'), Z = z)}{P(Y = y | do(X = x), Z = z)}$$

$$P(Y = y | do(X = x')) = \sum_{z} P(Y = y | X = x', Z = z)P(Z = z)$$

Estimating Potential Outcome After Intervention — Causal Risk Ratio

Causal Risk Ratio:

CRR =
$$\frac{P(Y = y | do(X = x'), Z = z)}{P(Y = y | do(X = x), Z = z)}$$

$$P(Y = y | do(X = x')) = \sum_{z} P(Y = y | X = x', Z = z)P(Z = z)$$

Causal Sufficiency Assumption

$$P(Y = y | do(X = x)) = P(Y = y | X = x, Z = z)$$

Estimating Potential Outcome After Intervention — Causal Risk Ratio

Causal Risk Ratio:

$$CRR = \frac{P(Y = y | do(X = x'), Z = z)}{P(Y = y | do(X = x), Z = z)}$$

$$P(Y = y | do(X = x')) = \sum_{z} P(Y = y | X = x', Z = z)P(Z = z)$$

Causal Sufficiency Assumption

$$P(Y = y | do(X = x)) = P(Y = y | X = x, Z = z)$$

$$CRR = \frac{P(Y = y | X = x', Z = z)}{P(Y = y | X = x, Z = z)}$$

• CGMH: sentence generation with **Metropolis-Hastings Sampling**. [Miao et al. 2019]

- CGMH: sentence generation with **Metropolis-Hastings Sampling**. [Miao et al. 2019]
 - Define desired properties as stationary distribution $\pi(y)$

- CGMH: sentence generation with **Metropolis-Hastings Sampling**. [Miao et al. 2019]
 - Define desired properties as stationary distribution $\pi(y)$
 - Move y_t to y_{t+1} by generating from the proposal distribution $g(y_{t+1} | y_t)$

- CGMH: sentence generation with **Metropolis-Hastings Sampling**. [Miao et al. 2019]
 - Define desired properties as stationary distribution $\pi(y)$
 - Move y_t to y_{t+1} by generating from the proposal distribution $g(y_{t+1} | y_t)$
 - Accept a proposal with acceptance rate $\alpha(y_{t+1}|y_t)$

- CGMH: sentence generation with **Metropolis-Hastings Sampling**. [Miao et al. 2019]
 - Define desired properties as stationary distribution $\pi(y)$
 - Move y_t to y_{t+1} by generating from the proposal distribution $g(y_{t+1} | y_t)$
 - Accept a proposal with acceptance rate $\alpha(y_{t+1}|y_t)$
 - Iterate until convergence

- CGMH: sentence generation with **Metropolis-Hastings Sampling**. [Miao et al. 2019]
 - Define desired properties as stationary distribution $\pi(y)$
 - Move y_t to y_{t+1} by generating from the proposal distribution $g(y_{t+1} | y_t)$
 - Accept a proposal with acceptance rate $\alpha(y_{t+1}|y_t)$
 - Iterate until convergence
 - Rank the accepted ones with $\pi(\cdot)$

- CGMH: sentence generation with **Metropolis-Hastings Sampling**. [Miao et al. 2019]
 - Define desired properties as stationary distribution $\pi(y)$
 - Move y_t to y_{t+1} by generating from the proposal distribution $g(y_{t+1} | y_t)$
 - Accept a proposal with acceptance rate $\alpha(y_{t+1}|y_t)$
 - Iterate until convergence
 - Rank the accepted ones with $\pi(\cdot)$

$$\alpha(\mathbf{y}_{t+1} | \mathbf{y}_t) = \min\left\{1, \frac{\pi(\mathbf{y}_{t+1})^{1/T} g(\mathbf{y}_t | \mathbf{y}_{t+1})}{\pi(\mathbf{y}_t)^{1/T} g(\mathbf{y}_{t+1} | \mathbf{y}_t)}\right\}$$

- CGMH: sentence generation with **Metropolis-Hastings Sampling**. [Miao et al. 2019]
 - Define desired properties as stationary distribution $\pi(y)$
 - Move y_t to y_{t+1} by generating from the proposal distribution $g(y_{t+1} | y_t)$
 - Accept a proposal with acceptance rate $\alpha(y_{t+1}|y_t)$
 - Iterate until convergence
 - Rank the accepted ones with $\pi(\cdot)$

$$\alpha(\mathbf{y}_{t+1} | \mathbf{y}_t) = \min \left\{ \begin{array}{l} \pi(\mathbf{y}_{t+1})^{1/T} g(\mathbf{y}_t | \mathbf{y}_{t+1}) \\ \pi(\mathbf{y}_t)^{1/T} g(\mathbf{y}_{t+1} | \mathbf{y}_t) \end{array} \right\}$$
$$\pi(\mathbf{y}) \propto \mathcal{X}_{LM}(\mathbf{y}) \cdot \mathcal{X}_{Coh}(\mathbf{y})$$
coherence & fluency

Desired Properties: Fluency and Coherence

• Fluency Score

• Sentence probability from a PLM (e.g., GPT-2)

$$\mathcal{X}_{\rm LM}(y^*) = \prod_{i=1}^{N} P_{\rm LM}(y^*_i \,|\, z, x', y^*_{< i})$$

Desired Properties: Fluency and Coherence

• Fluency Score

• Sentence probability from a PLM (e.g., GPT-2)

$$\mathcal{X}_{\text{LM}}(y^*) = \prod_{i=1}^{N} P_{\text{LM}}(y^*_i \,|\, z, x', y^*_{< i})$$

Coherence Score

- Punish proposed endings contradictory to the counterfactual conditions but consistent with the initial ones
- Inspired by CRR
- P_{Coh} could be changed from a PLM to more sophisticated ones

$$\mathscr{X}_{\text{Coh}}(y^*) = \frac{P_{\text{Coh}}(Y = y^* \mid z, x')}{P_{\text{Coh}}(Y = y^* \mid z, x)}$$

CRR =
$$\frac{P(Y = y | X = x', Z = z)}{P(Y = y | X = x, Z = z)}$$

Make an Edit Proposal — Where to Edit?

Conflict token detection

Make an Edit Proposal — Where to Edit?

Conflict token detection

 $CRR = \frac{P(Y = y | X = x', Z = z)}{P(Y = y | X = x, Z = z)}$

$$P_{\rm cf}(y_i^*) = \text{softmax}(\frac{P_{\rm LM}(y_i^* | z, x, y_{< i}^*)}{P_{\rm LM}(y_i^* | z, x', y_{< i}^*)})$$

Make an Edit Proposal — Edit with What?

Modification actions

$$g(\mathbf{y}_{t+1} | \mathbf{y}_t) = \frac{1}{3} \sum_{\text{op} \in \{r, d, i\}} g_{\text{op}}(\mathbf{y}_{t+1} | \mathbf{y}_t)$$

- *Replace*: mask-predict with an MLM (e.g., BERT)
 - $g_r(\mathbf{y}_{t+1} | \mathbf{y}_t) = 1(w^c \in \mathcal{Q}) \cdot P_{\text{MLM}}(w_m^* = w^c | \mathbf{x}_{-m})$
 - Sample from $P_{\text{MLM}}(\cdot)$
- *Insert*: insert a [MASK], then do *Replace*
- Delete: reverse of Insert

Original Ending

47

Counterfactual Ending

Experiments: Dataset and Metrics

• Dataset

– TimeTravel

Metrics

- BLEU
- BERTScore

	Train	Dev	Test
# counterfactual context (x')	96,867	1,871	1,871
# edited endings (y')	16,752	5,613	7,484

Table 1: Statistics of TIMETRAVEL dataset.

Experiments: Dataset and Metrics

• Dataset

– TimeTravel

Metrics

- BLEU
- BERTScore

- EntScore: a model-based discriminative metric
 - Initial or counterfactual? Binary classification with RoBERTa
 - For coherence

Experiments: Dataset and Metrics

• Dataset

– TimeTravel

Metrics

- BLEU
- BERTScore

- EntScore: a model-based discriminative metric
 - Initial or counterfactual? Binary classification with RoBERTa
 - For coherence
- HMean: Harmonic Mean of EntScore and BLEU
 - For the trade-off

Better trade-off with HMean of ENTS and BLEU!

Method	BLEU	BERT	\mathbf{ENTS}_l	HMEAN
	Supervis	ed Trainir	ıg	
$GPT-2_M + SUP$	76.35	81.72	35.06	48.05
	Unsuperv	ised Train	ing	
$\text{GPT-}2_M + \text{FT}$	3.90	53.00	52.77	7.26
Recon+CF	76.37	80.20	18.00	29.13
Off-t	he-shelf P	re-trained	l Models	
GPT-2_M	1.39	47.13	54.21	2.71
DELOREAN	23.89	59.88	51.40	32.62
CGMH	41.34	73.82	29.80	34.63
EDUCAT	44.05	74.06	32.28	37.26
Human	64.76	78.82	80.56	71.80

Table 3: Automatic evaluation results in the test set of TIME-TRAVEL. These methods use GPT-2_M by default. ENTS_l is short for ENTSCORE (large).

Method	BLEU	BERT	\mathbf{ENTS}_l	HMEAN
	Supervis	ed Trainin	ıg	
$GPT-2_M + SUP$	76.35	81.72	35.06	48.05
	Unsuperv	ised Train	ing	
$GPT-2_M + FT$	3.90	53.00	52.77	7.26
Recon+CF	76.37	80.20	18.00	29.13
Off-t	he-shelf P	re-trained	l Models	
GPT-2_M	1.39	47.13	54.21	2.71
DELOREAN	23.89	59.88	51.40	32.62
CGMH	41.34	73.82	29.80	24.63
EDUCAT	44.05	74.06	32.28	37.26
Human	64.76	78.82	80.56	71.80

Table 3: Automatic evaluation results in the test set of TIME-TRAVEL. These methods use GPT- 2_M by default. ENTS_l is short for ENTSCORE (large).

• EDUCAT is competitive against baselines but falls far behind humans.

Method	BLEU	BERT	\mathbf{ENTS}_l	HMEAN	
	Supervis	ed Trainir	ıg		
$GPT-2_M + SUP$	76.35	81.72	35.06	48.05	
	Unsuperv	ised Train	ing		
$\text{GPT-2}_M + \text{FT}$	3.90	53.00	52.77	7.26	
Recon+CF	76.37	76.37 80.20		29.13	
Off-t	he snelf P	re-trained	Models		
GPT-2_M	1.39	47.13	54.21	2.71	
DELOREAN	23.89	59.88	51.40	32.62	
CGMH	41.54	73.82	22.60	34.63	
EDUCAT	44.05	74.06	32.28	37.26	
Human	64.76	78.82	80.56	71.80	

Table 3: Automatic evaluation results in the test set of TIME-TRAVEL. These methods use $\text{GPT-}2_M$ by default. ENTS_l is short for ENTSCORE (large).

- EDUCAT is competitive against baselines but falls far behind humans.
- With massive edits, even a pre-trained GPT-2 can write coherent endings.

(Please check the paper for details.)

Method	BLEU	BERT	ENTS _l	HMEAN
	Supervis	ed Trainin	ng	
$GPT-2_M + SUP$	76.35	81.72	35.06	48.05
	Unsuperv	ised Train	ing	
$GPT-2_M + FT$	3.90	53.00	52.77	7.26
Recon+CF	76.37	80.20	18.00	29.13
Off-1	he-shelf P	re-trainea	l Models	
GPT-2_M	1.39	47.13	54.21	2.71
DELOREAN	23.89	59.88	51.40	32.62
CGMH	41.34	73.82	29.80	34.63
EDUCAT	44.05	74.06	32.28	37.26
Human	64.76	78.82	80.56	71.80

Table 3: Automatic evaluation results in the test set of TIME-TRAVEL. These methods use GPT- 2_M by default. ENTS_l is short for ENTSCORE (large).

Methods	Coherence			
	Win	Tie	Lose	
EDUCAT vs. DELOREAN	45%	32%	23%	
EDUCAT vs. CGMH	32%	51%	17%	
EDUCAT vs. Human	12%	24%	64%	
	Min-edits			
EDUCAT vs. DELOREAN	64%	27%	9%	
EDUCAT vs. CGMH	26%	49%	25%	
EDUCAT vs. Human	16%	40%	44%	

Table 4: Manual evaluation results, with scores denoting the percentage of *Win*, *Lose* or *Tie* when comparing EDUCAT with baselines.

- EDUCAT is competitive against baselines but falls far behind humans.
- With massive edits, even a pre-trained GPT-2 can write coherent endings.
- EDUCAT is competitive in coherence and minimal-edits under human evaluation.

(Please check the paper for details.)

Ablation Study

Ablation	BLEU	BERT	\mathbf{ENTS}_l	HMEAN
EDUCAT (GPT- 2_S)	39.82	72.35	31.72	35.31
EDUCAT (GPT- 2_M)	44.05	74.06	32.28	37.26
$-\mathcal{X}_{ ext{Coh}}$	44.20	74.27	31.44	36.74
– conflict detection	40.96	73.61	30.79	35.16
– both	41.34	73.82	29.80	34.63
+ \mathcal{X}_{Coh} w/ EntS _b	43.65	74.09	42.03	42.83

Table 5: Ablation study of EDUCAT in terms of conflict detection module and coherence score \mathcal{X}_{Coh} . We also change the P_{Coh} in \mathcal{X}_{Coh} to the trained discriminative metric ENTSCORE.

• Both conflict detection and coherence objective work for the task.

Ablation Study

Ablation	BLEU	BERT	\mathbf{ENTS}_l	HMEAN
EDUCAT (GPT- 2_S)	39.82	72.35	31.72	35.31
EDUCAT (GPT- 2_M)	44.05	74.06	32.28	37.26
$-\mathcal{X}_{ ext{Coh}}$	44.20	74.27	31.44	36.74
 – conflict detection 	40.96	73.61	30.79	35.16
– both	41.34	73.82	29.80	34.63
+ $\mathcal{X}_{ ext{Coh}}$ w/ Ent \mathbf{S}_b	43.65	74.09	42.03	42.83

Table 5: Ablation study of EDUCAT in terms of conflict detection module and coherence score \mathcal{X}_{Coh} . We also change the P_{Coh} in \mathcal{X}_{Coh} to the trained discriminative metric ENTSCORE.

- Both conflict detection and coherence objective work for the task.
- Can be further improved with a more sophisticated coherence checking model for $P_{\rm coh}(\cdot)$ in $\mathscr{X}_{\rm coh}(\cdot)$.

(Please check the paper for details.)

<u>S1:</u> Gina had done everything she could think of to beat the heat.

S2: And it was only noon.

S₃: The sun was still high in the sky.

 S_4 : She decided she needed to go where there was air conditioning.

S₅: She went inside a nearby cafe.

S'2<mark>: Luckily, it was</mark> evening and starting to cool off.

 S'_3 : The sun had gotten lower in the sky.

S'4: She decided next time it was so hot she needed to go where there was air conditioning.

 S'_5 : So she planned to go inside a nearby cafe.

HUMAN

<u>S1:</u> Gina had done everything she could think of to beat the heat.

S2<mark>: And it was only noon</mark>.

S₃: The sun was still high in the sky.

S4: She decided she needed to go where there was air conditioning.

S₅: She went inside a nearby cafe.

S'2<mark>: Luckily, it was</mark> evening and starting to cool off.

S'3: The sun had gotten lower in the sky.
S'4: She decided next time it was so hot she needed to go where there was air conditioning.
S'5: So she planned to go inside a nearby cafe.

S'3: The sun was still high in the sky.

 S'_4 : She decided she needed to go outside and get some fresh air.

 S_{5} : She went inside and got some fresh air.

HUMAN

DELOREAN

<u>S1:</u> Gina had done everything she could think of to beat the heat.

S2: And it was only noon.

 S_3 : The sun was still high in the sky.

 S_4 : She decided she needed to go where there was air conditioning.

 S_5 : She went inside a nearby cafe.

S'2<mark>: Luckily, it was</mark> evening and starting to cool off.

	 S'3: The sun had gotten lower in the sky. S'4: She decided next time it was so hot she needed to go where there was air conditioning. S'5: So she planned to go inside a nearby cafe. 	Human
	S'3: The sun was still high in the sky. S'4: She decided she needed to go outside and get some fresh air. S'5: She went inside and got some fresh air.	Delorean
2	S'3: The sun was high in the sky. S'4: She decided she needed to go somewhere where there was air. S'5: She went to the beach.	CGMH

S1:	Gina	had	done	everything	she	could	think	of to	beat	the l	neat.
<u> </u>	Onna	inaca	aone	everything	one	coura	crimitic	01 10	ocut	cite i	icut.

S2: And it was only noon.

S₃: The sun was still high in the sky.

S4: She decided she needed to go where there was air conditioning.

 S_5 : She went inside a nearby cafe.

S'2<mark>: Luckily, it was</mark> evening and starting to cool off.

	 S'3: The sun had gotten lower in the sky. S'4: She decided next time it was so hot she needed to go where there was air conditioning. S'5: So she planned to go inside a nearby cafe. 	Human
	S'3: The sun was still high in the sky. S'4: She decided she needed to go outside and get some fresh air. S'5: She went inside and got some fresh air.	Delorean
2	S'3: The sun was high in the sky. S'4: She decided she needed to go somewhere where there was air. S'5: She went to the beach.	CGMH
	S'3: The sun was low in the sky. S'4: She decided that she needed to go somewhere where there was no air conditioning. S'5: She headed to the park.	EduCat 65

- Editing-based methods are also well-suited for generative counterfactual reasoning.
- Better components for EDUCAT will benefit unsupervised story rewriting.
 - e.g., better coherence score, more desired properties, etc.
- Better metrics should be studied for evaluating this task!

Have Fun with EDUCAT!

Checkout our code at **GitHub**! <u>https://github.com/jiangjiechen/EDUCAT</u>