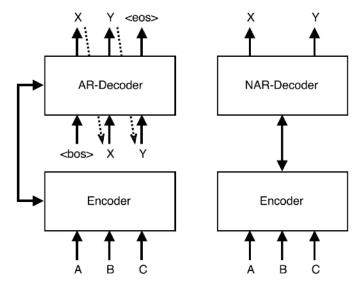
2022 Annual Conference of the North American Chapter of the Association for Computational Linguistics

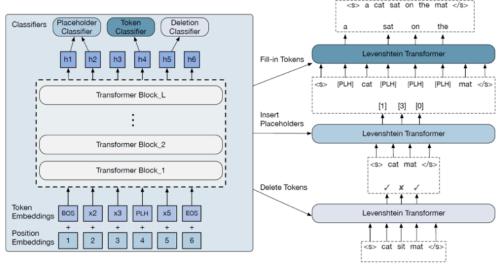
Hybrid: Seattle, Washington + Online July 10-15, 2022


Neighbors Are Not Strangers: Improving Non-autoregressive Translation under *Low-frequency* Lexical Constraints

Chun Zeng^{*1}, **Jiangjie Chen**^{*1}, Tianyi Zhuang¹, Rui Xu¹, Hao Yang², Ying Qin², Shimin Tao², Yanghua Xiao¹

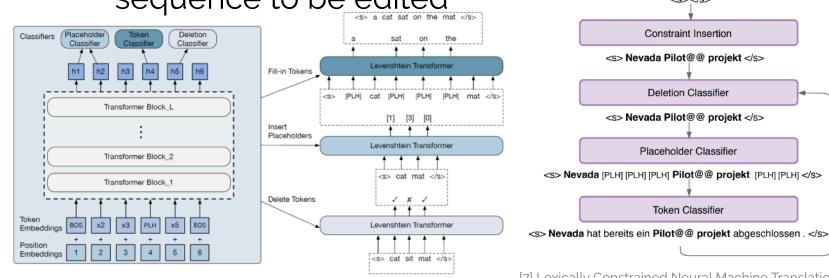
Non-autoregressive Translation

- Autoregressive Translation (AT)
 - Autoregressive decoding: $p(y_t | x, y_{< t})$
 - O(n), n = target length
- Non-autoregressive Translation (NAT)
 - Independent decoding: $p(y_t | x)$
 - O(1): Decode in parallel (Faster!)


Models	WMT14		WM	[T16	IWSLT16		
	En→De	De→En	En→Ro	Ro→En	En→De	Latency /	Speedup
NAT	17.35	20.62	26.22	27.83	25.20	39 ms	$15.6 \times$
NAT (+FT)	17.69	21.47	27.29	29.06	26.52	39 ms	$15.6 \times$
NAT (+FT + NPD $s = 10$)	18.66	22.41	29.02	30.76	27.44	79 ms	$7.68 \times$
NAT (+FT + NPD $s = 100$)	19.17	23.20	29.79	31.44	28.16	257 ms	$2.36 \times$
Autoregressive $(b = 1)$ Autoregressive $(b = 4)$	22.71 23.45	26.39 27.02	31.35 31.91	31.03 31.76	28.89 29.70	408 ms 607 ms	$\begin{array}{c} 1.49 \times \\ 1.00 \times \end{array}$

Constrained NAT: Iterative Editing-based NAT

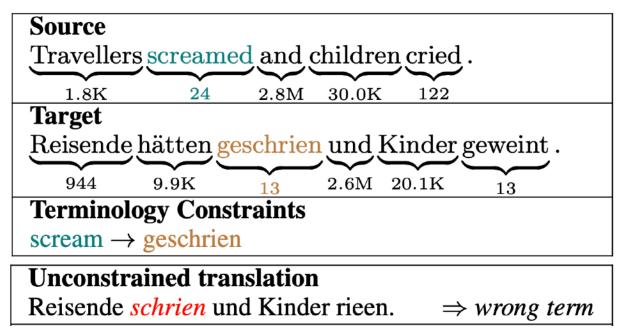
- *Iterative NAT*: trade-off of speed and performance
 - Conditioned on previous iteration


Constrained NAT: Iterative Editing-based NAT

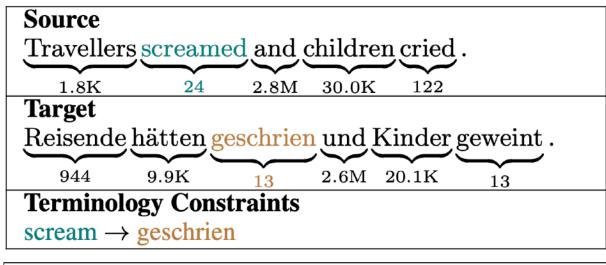
- *Iterative NAT*: trade-off of speed and performance
 - Conditioned on previous iteration
- Iterative editing for constrained NAT
 - e.g. (Constrained) Levenshtein Transformer (LevT)

Constrained NAT: Iterative Editing-based NAT


- *Iterative NAT*: trade-off of speed and performance
 - Conditioned on previous iteration
- Iterative editing for constrained NAT
 - e.g. (Constrained) Levenshtein Transformer (LevT)
 - Forced *non-deletion* of constraint words as initial sequence to be edited

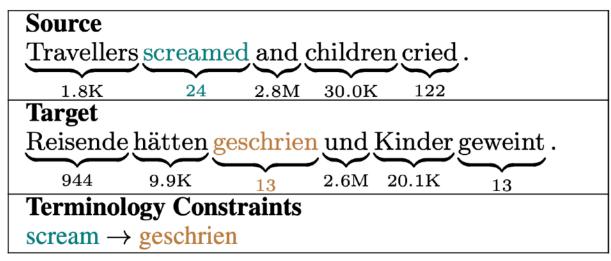

[2] Levenshtein Transformer (Gu et al., 2019)

[7] Lexically Constrained Neural Machine Translation with Levenshtein Transformer (Susanto et al., 2020)


- *Pre-defined terminologies* as lexical constraints to ensure the correct translation of terms
- Low-frequency constraints: *geschrien*

- *Pre-defined terminologies* as lexical constraints to ensure the correct translation of terms
- Low-frequency constraints: geschrien

- *Pre-defined terminologies* as lexical constraints to ensure the correct translation of terms
- Low-frequency constraints: *geschrien*


Hard constrained translationReisende geschrien. \Rightarrow incomple

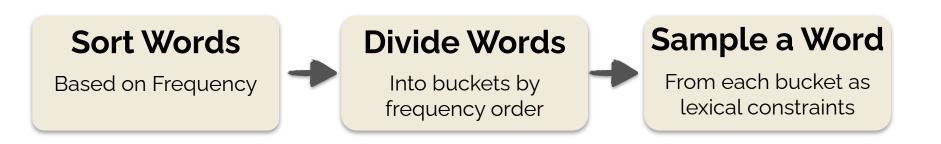
 \Rightarrow incomplete sentence

Hard Constraint

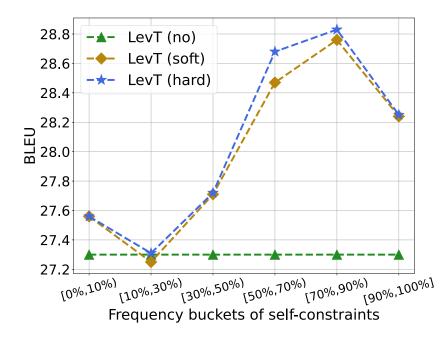
Given constraint must appear in the translation.

- *Pre-defined terminologies* as lexical constraints to ensure the correct translation of terms
- Low-frequency constraints: *geschrien*

Soft constrained translation


Reisende *rien*. \Rightarrow *incomplete sentence* & *wrong term*

Soft Constraint


Allow constraints to be changed.

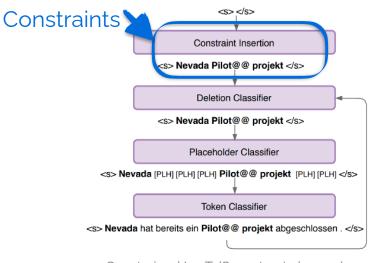
Motivating Study: Self-Constrained Translation

- Constrained NAT models seem to suffer from low-frequency constraint issues.
 Dangerous!
- Self-constrained Translation: Using different words in a sentence as constraints.

Motivating Study: Self-Constrained Translation

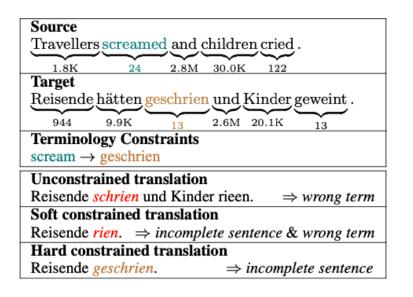
Same target for different self-constraints

Motivating Study: Self-Constrained Translation

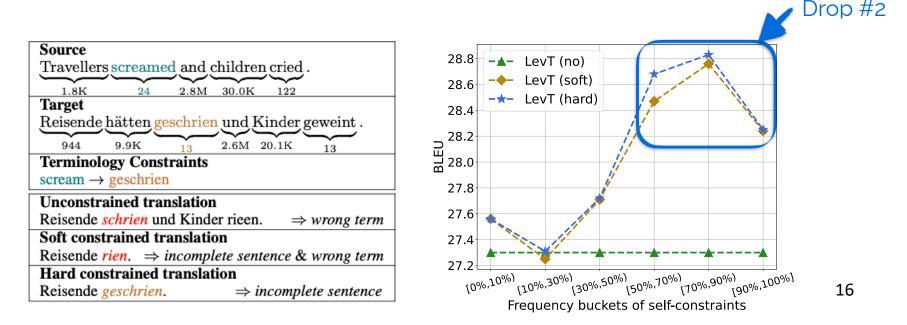

Drop#1

 Mostly unknown tokens (i.e., <UNK>) in the bucket 2.

Drop#2

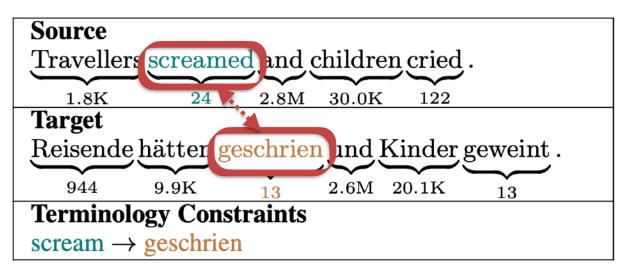

 Low-frequency tokens as constraints lead to severe performance drop.

- Easy to Translate the Constraint Itself:
 - The model does not have to translate rare constraints as they are set as an *initial sequence*



- Easy to Translate the Constraint Itself:
 - The model does not have to translate rare constraints as they are set as an *initial sequence*
- Hard to Recognize its Neighbors:
 - The model has a hard time translating the context of the rare constraints

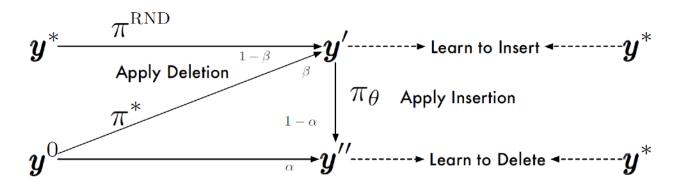
- Easy to Translate the Constraint Itself:
 - The model does not have to translate rare constraints as they are set as an *initial sequence*
- Hard to Recognize its Neighbors:
 - The model has a hard time translating the context of the rare constraints


- Easy to Translate the Constraint Itself:
 - The model does not have to translate rare constraints as they are set as an *initial sequence*
- Hard to Recognize its Neighbors:
 - The model has a hard time translating the context of the rare constraints

Motivation: Neighbors Are Not Strangers

1. Know your neighbors.

- Constraints are strangers (rare), but neighbors are not.
- Prompting the alignment information between targetside constraint tokens and source tokens
- 2. Train to preserve constraints.
 - Bridge the gap between training and constrained decoding.

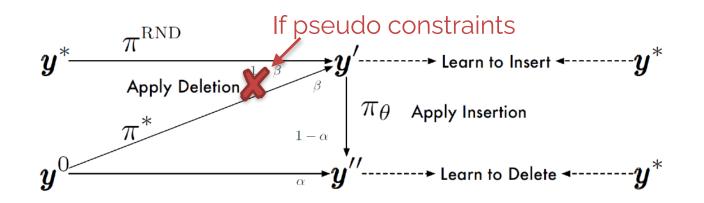

Our Proposal

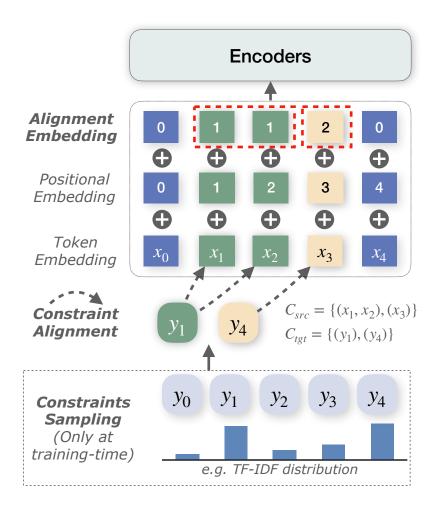
- A plug-in algorithm for lexically constrained NATs, i.e., **A**ligned **C**onstrained **T**raining (**ACT**)
- ACT is designed based on two major ideas:
 - Constrained Training (CT): bridging the discrepancy between training and constrained inference
 - *Alignment Prompting*: helping the model understand the context of the constraints

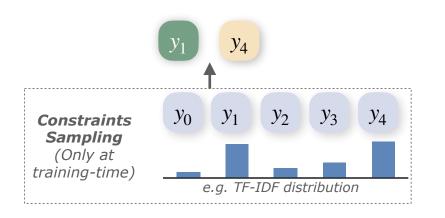
*ACT = CT + Alignment Prompting

Training LevT: Imitation Learning

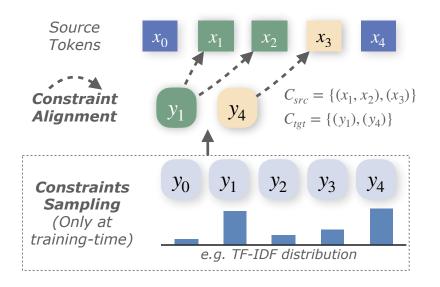
- Learn to Insert: $y' \rightarrow y^*$
 - Random deletion is applied for ground-truth y^* to get the incomplete sentences y'
- Learn to Delete: $y'' \rightarrow y^*$
 - Let model(θ) insert from y' to y''

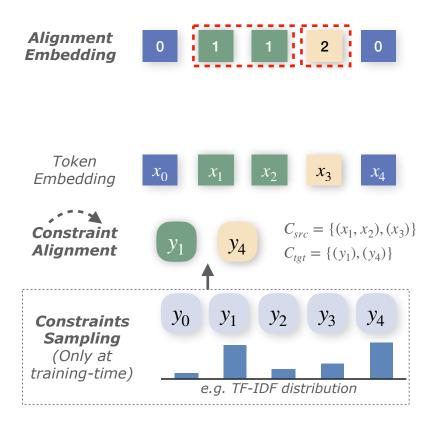


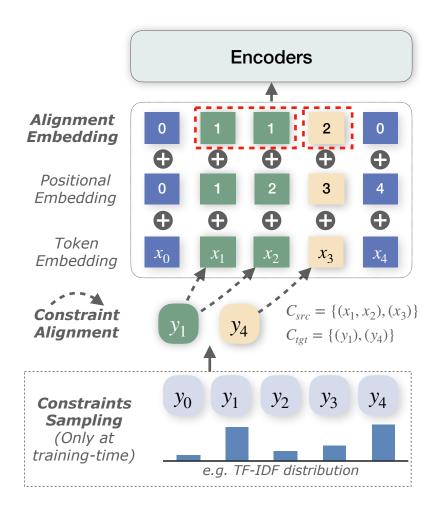

Discrepancy between Training and Inference


- Random deletion training in iterative NATs
- The model does not learn to
 - Preserve fixed tokens
 - Organize the translation around the tokens.

(1) Constrained Training


- Disallow deletion during building data samples for imitation learning
- Build pseudo terminology constraints
 - Sample 1-3 words (more tokens) from reference as the *pre-defined constraints* for training




1. Get constraints (during training or inference)

2. Build alignment with external alignment tools.e.g. GIZA++

3. Build alignment embedding for source tokens

4. Prompt the alignment information to the model

Experimental Setup

Training Set

• WMT14 (En-De)

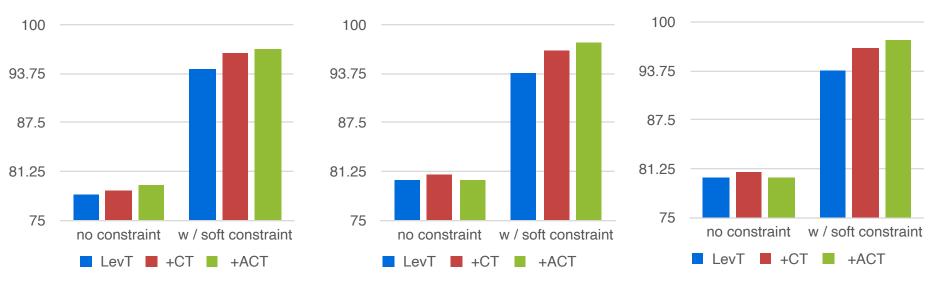
Test Sets

- General domain (news)
 - WMT14-WIKT
 - WMT14-IATE
 - WMT17-WIKT
- Specific domain
 - OPUS-EMEA (medical)
 - OPUS-JRC (legal)

Evaluation

- BLEU
- Term Usage Rate

Dataset (test set)	# Sent.	Avg. Len. of Con.	Avg. Con. Freq.		
WMT14-WIKT	454	1.15	25,724.73		
WMT17-IATE	414	1.09	3,685.42		
WMT17-WIKT	728	1.22	26,252.70		
OPUS-EMEA	2,996	1.95	2,187.63		
OPUS-JRC	2,984	1.99	3,725.71		

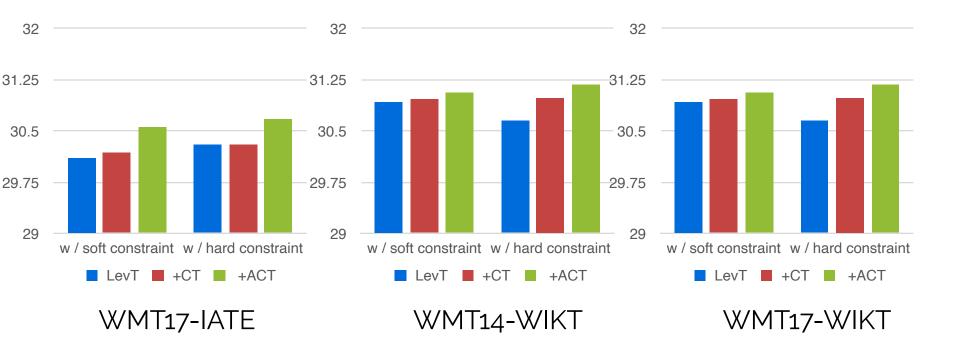

Main Results

	WMT1'	7-IATE	WMT17-WIKT		WMT14-WIKT		Latency
Models	Term%	BLEU	Term%	BLEU	Term%	BLEU	(ms)
Reported results in previous work							
Transformer (Vaswani et al., 2017) [†]	79.65	29.58	79.75	30.80	76.77	31.75	244.5
DBA (Post and Vilar, 2018)	82.00	25.30	99.50	25.80	-	-	434.4
Train-by-rep (Dinu et al., 2019)	94.50	26.00	93.40	26.30	-	-	-
$\overline{\text{LevT}}$ (Gu et al., 2019) [†]	80.31	28.97	81.11	30.24	80.23	29.86	92.0
w/ soft constraint (Susanto et al., 2020)	93.81	29.73	93.44	30.82	94.43	29.93	-
w/ hard constraint (Susanto et al., 2020)	100.00	30.13	100.00	31.20	100.00	30.49	-
EDITOR (Xu and Carpuat, 2021) [†]	83.00	27.90	83.50	28.80	-	-	121.7
w/ soft constraint	97.10	28.80	96.80	29.30	-	-	-
w/ hard constraint	100.00	28.90	99.80	29.30	-	-	134.1
Our implementation							
LevT [†]	78.32	29.80	80.20	30.75	79.53	29.95	71.9
+ constrained training $(CT)^{\dagger}$	78.76	29.46	80.77	30.82	79.13	30.24	78.6
+ aligned constrained training $(ACT)^{\dagger}$	79.43	29.57	80.20	30.63	77.17	30.35	77.0
LevT w/ soft constraint	94.25	30.11	93.78	30.92	94.88	30.38	79.5
+ constrained training (CT)	96.24	30.19	96.61	30.96	97.44	31.01	75.4
+ aligned constrained training (ACT)	96.90	30.56	97.62	31.06	98.82	31.08	76.3
LevT w/ hard constraint	$1\overline{0}0.0\overline{0}$	30.31	$\overline{100.00}$	30.65	100.00	30.49	82.7
+ constrained training (CT)	100.00	30.31	100.00	30.99	100.00	31.01	78.1
+ aligned constrained training (ACT)	100.00	30.68	100.00	31.18	100.00	31.11	77.0

Consistent performance gain for (A)CT

Ablation for CT and ACT: Term Usage Rate

1. Term usage rate increases mainly because of CT, and can be further improved by Alignment Prompting.


WMT17-IATE

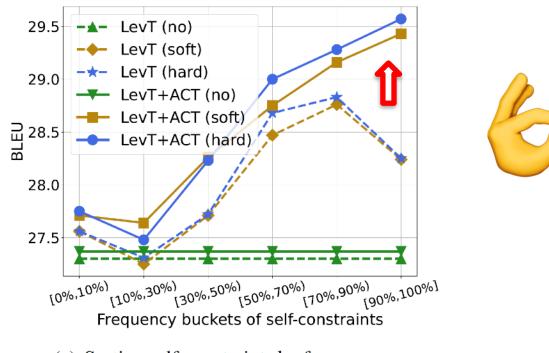
WMT14-WIKT

WMT17-WIKT

Ablation for CT and ACT: BLEU

2. Translation quality (BLEU) increases due to the additional hard alignment of ACT over CT

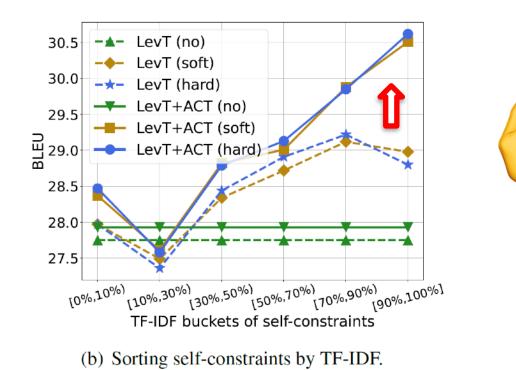
Translation Results on Domain Datasets


- Even greater performance gain
 - LevT would have a hard time recognizing them as constraints.
 - LevT + ACT knows the context ("neighbors") of the rare constraint ("strangers") and insert the translated context around the lexical constraints

Model	OPUS-	EMEA	OPUS-JRC			
	Term%	BLEU	Term%	BLEU		
LevT [†]	52.40	27.90	55.39	30.24		
$+ ACT^{\dagger}$	53.41	28.30	55.35	31.01		
LevT w/ soft	83.37	30.35	84.32	32.53		
+ ACT	92.09	32.02	91.94	33.70		
LevT w/ hard	-100.00	30.77	$\overline{100.00}$	- 30.08 -		
+ ACT	100.00	32.30	100.00	34.09		

Self-Constrained Translation Revisited

Self-Constrained Translation Revisited


• ACT successfully breaks the drop with better understanding of the provided contextual information

(a) Sorting self-constraints by frequency.

Self-Constrained Translation Revisited

- What if the self-constraints are sorted based on TF-IDF?
 - Very similar trends

(1) Are improvements by ACT robust against constraints of different frequencies?

(1) Are improvements by ACT robust against constraints of different frequencies?

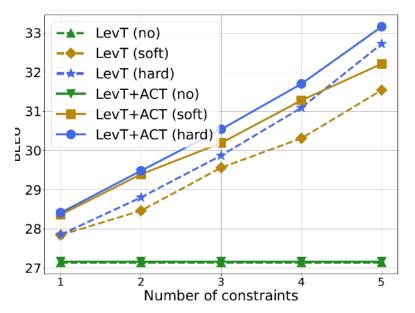

Model WMT1		WMT14	TI4-WIKT		WMT17-IATE			WMT17-WIKT				
	All	High	Med.	Low	All	High	Med.	Low	All	High	Med.	Low
LevT [†]	29.95	30.46	28.03	31.49	29.80	30.08	29.72	29.45	30.75	30.96	29.09	32.16
$+ ACT^{\dagger}$	30.35	30.68	28.00	32.54	29.57	29.63	29.57	29.20	30.63	30.35	29.11	32.46
$\overline{\text{LevT}} \overline{\text{w}} / \overline{soft} \overline{\text{m}}$	30.38	$3\overline{0}.\overline{3}7$	$\bar{28.50}$	32.19	30.11	$\bar{29.25}$	30.67	30.04	30.92	30.70	29.58	32.23
+ ACT	31.08	30.48	29.18	33.85	30.56	29.93	31.05	30.36	31.06	30.72	29.53	32.73
- LevT w/ hard	$3\overline{0}.\overline{4}9$	30.5 0	-28.67	31.99	30.31	29.46	- 30.66	30.37	30.65	30.28	29.44	32.00
+ ACT	31.11	30.23	29.32	33.85	30.68	29.97	31.18	30.67	31.18	30.58	29.71	32.90

Table 6: Ablation results of terminology-constrained $En \rightarrow De$ translation tasks w.r.t. word frequency of terms.

 LevT benefits mostly from ACT in the scenarios of lower frequency terms for three datasets.

(2) Are improvements by ACT robust against constraints of different numbers?

(2) Are improvements by ACT robust against constraints of different numbers?

- The translation quality ostensibly becomes better for LevT with or without ACT.
- ACT consistently brings extra improvements.

 For unconstrained translation, ACT does not bring much performance gain.

Model	Term%	BLEU				
		Full (3,003)	Con. (454)			
$LevT^{\dagger}$	79.53	26.95	29.95			
$+ ACT^{\dagger}$	77.17	26.93	30.35			
LevT w/ soft	94.88	27.04	30.38 -			
+ ACT	98.82	27.06	31.08			
LevT w/ hard	$^{-}100.00^{-}$	27.06	30.49 -			
+ ACT	100.00	27.07	31.11			
	0					

- For unconstrained translation, ACT does not bring much performance gain.
- We do not propose a new paradigm for constrained NAT (editing-based iterative NATs).

- For unconstrained translation, ACT does not bring much performance gain.
- We do not propose a new paradigm for constrained NAT (editing-based iterative NATs).
- We call for new paradigms for constrained NAT! Perhaps even one-pass NAT!

- Neighbors are not strangers: prompting constrained NATs with alignment information alleviates low-frequency constraints problem.
- We propose a plug-in algorithm (ACT) to improve lexically constrained NAT, especially under low-frequency constraints.
- Further analyses show that the findings are consistent over constraints varied from frequency, TF-IDF, and numbers.

More About ACT

https://github.com/sted-byte/ACT4NAT

jjchen19@fudan.edu.cn

https://jiangjiechen.github.io